
313

CHUNK: An Agile Approach to the

Software Development Lifecycle

Andrew Aken

ABSTRACT: This paper introduces a methodology for developing
applications incorporating components of Agile development methods
with the traditional Software Development Lifecycle (SDLC), a/k/a the
“waterfall” model of software development. We look at the causes for
failure of software development projects and propose steps in the
development process to address many of the root causes of these failures
(it would be implausible to state that any development methodology
could eliminate the risk of failure). We also provide a critical review of
Agile principles and the traditional SDLC. The steps of the new
methodology are then described with rationalization for their necessity.

KEYWORDS: Agile methodologies, design, requirements analysis,
software development life cycle (SDLC), software development
methodology, system analysis

Andrew Aken is a Lecturer in Information Systems and Applied
Technologies, College of Applied Sciences and Arts, Southern Illinois
University, Carbondale, IL 62901.

Address correspondence to Andrew Aken, Lecturer, Information
Systems and Applied Technologies, College of Applied Sciences and
Arts, Southern Illinois University, Carbondale, IL 62901. E-mail:
ajaken@cba.siu.edu.

Journal of Internet Commerce, Vol. 7(3) 2008
Available online at http://www.haworthpress.com
© 2008 by The Haworth Press. All rights reserved.

doi: 10.1080/15332850802250385

314 JOURNAL OF INTERNET COMMERCE

Web-based application development is not so fundamentally
different from traditional software development that it can wholly
disregard utilization of development methodologies. In fact, it can be
argued that given the tight integration of many web-based applications
with the rest of the organization (e.g. e-commerce applications must
work within the bounds of the marketing department, customer
service, accounting, supply-chain management, etc.), it can be even
more critical to utilize a comprehensive software development
methodology (Boehm & Basili, 2001; Glass, 2003).

As in the early years in software development, web-based
application development is often accomplished without any formal
methodology applied. Many early web-based projects were developed
by novice developers without any formal training in, or understanding
of, software development and utilized an Ad Hoc approach. Many web
design organizations still function in this manner. Even when a
software development methodology was utilized, the stakeholders in
the project are frequently not properly identified. Stakeholders are
generally recognized as the visitors to the web site, but may also
include innumerable individuals and departments within the
organization as well.

However, several concerns have also been expressed for many
years regarding traditional software development methodologies.
Baskerville and Pries-Heje (2004) identified 6 significant problems
with the way most organizations approach software development:

• Formal methodologies within an organization are often poorly
documented or poorly applied.

• Identification of key stakeholders is typically incomplete.
• Requirements analysis is not performed or is deficient.
• Requirements are changed frequently throughout the system

development.
• Problems with requirements, design, or implementation aren’t

discovered until the product is delivered.
• Inability to deliver applications with “Internet Speed”.

To rectify many of these deficiencies, “Agile” software
development methodologies were introduced in the late 1990s and
early 2000s. As stated in the Agile Manifesto (Agile Alliance, 2001),
the Agile Alliance values:

 Andrew Aken 315

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

However, because of their apparent lack of rigor in applying a
systematic requirements analysis and the fundamental shift in the
process of software development proposed by Agile development
methodologies, they have been erroneously categorized as being
amethodological. Agile methodologies, though, have well-defined
processes for stakeholder interaction and development.

This paper will look at the current state of software development to
determine if improvement is necessary. The paper will then look at
many of the causes of software development failures and determine if
the available methodological choices address these causes. The paper
will then propose a software development methodology which
attempts to address the primary flaws leading to software development
failures by taking advantage of the benefits of both Agile
methodologies and the traditional SDLC.

SOFTWARE DEVELOPMENT FAILURES

Although application development failures are in a general decline
since the Standish Group first published it’s rather alarming CHAOS
Report (Glass, 2006), the number of failed (cancelled or finished but
not used) and challenged (over budget, exceeding estimated time, or
lacking features) projects still comprises 71% of projects in surveyed
organizations (Hartman, 2006).

Although the methods used in collecting the data for the Standish
report have come into question (Glass, 2006), the trends and basic
findings of the studies are reflected in other research as well (Ewusi-
Mensah, 2003; The Hackett Group, 2003).

316 JOURNAL OF INTERNET COMMERCE

FIGURE 1. Software Implementation Success/Failure (Hartman, 2006)

In Ewusi-Mensah’s (2003) book, Software Development Failures,
he analyzes the reasons for project abandonment at 54 organizations.
His conclusions state that current software development
methodologies have not succeeded in providing reliable, valid, and
verifiable ways to combat software project failures. Failure or
abandonment of a project may occur whenever the expectations of any
of the stakeholder groups become unrealized and the situation causes
management to terminate the project prior to its installation and
operation.

Another outgrowth of poor methodological choice and/or
utilization is the significant increase in the costs of software
maintenance. As much as 80-90% of the total costs of software
development are incurred during maintenance (Bennett, 1991).

METHODOLOGICAL RESPONSES TO SOFTWARE
IMPLEMENTATION FAILURES

Many of the causes of software implementation failures and
maintenance costs can be attributed to the methodology (or lack of
methodology) used or its execution. In the following sections, we will

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Failed 31% 40% 28% 23% 15% 18%

Challenged 53% 33% 46% 49% 51% 53%

Succeeded 16% 27% 26% 28% 34% 29%

1994 1996 1998 2000 2002 2004

 Andrew Aken 317

look at several of the aspects of software development which have
been shown to be the primary contributors to implementation failures
and how these are addressed by the SDLC and Agile methodologies.
We will also look at how these attributes should be addressed in a
software development methodology to increase the likelihood of a
successful software development project.

Software Development Iteration

One of the primary reasons for these high failure rates is the delay
between the specification of the functional requirements and the final
installation of the working system. This delay causes many potential
problems that remain hidden throughout the duration of the
development process (MacCormack, 2001; Boehm, 2002; Ewusi-
Mensah, 2003; Poole, 2006; Nerur & Balijepally, 2007). To combat
this problem, the authors have recommended a need for iteration and
recursion in the development of the software project. The intention is
to bring functional code to the customer earlier in the process so that
mistakes in the requirements analysis can be brought to light sooner in
the development cycle.

One of the primary benefits of Agile methodologies is that they
iteratively produce deliverable products. This allows the developers to
quickly generate value and receive feedback faster. The quicker the
feedback is received from the customer, the earlier problems can be
discovered and resolved (MacCormack, 2001; Poole, 2006).

The Agile Manifesto also stresses the importance of delivering
working software frequently (from a couple of weeks to a couple of
months). However, delivery is not the same as release. Some projects
may not see releasable functionality for a year or more. However,
working software which can be demonstrated or used by the key
stakeholders is the primary measure of progress. Iterative development
is preferable primarily because it provides milestones that can't be
concealed and an accurate measure of the progress can be ascertained
(Agile Alliance, 2001).

Establishing Clear Goals & Objectives

Another key component in avoiding software project failure is to
specify project goals and objectives that are precise, unambiguous, and

318 JOURNAL OF INTERNET COMMERCE

not overly ambitious in order to be able to derive complete, consistent,
and realistic requirements on which the rest of the development will
depend. This is often considered the most difficult aspect of software
development (and one which Agile methodologies attempt to
circumvent). Setting attainable and unambiguous goals is also a
prerequisite to being able to determine when success has been attained
and a project is complete.

Establishing clear goals and objectives up front also focuses the
stakeholder groups on maintaining the same set of goals and objectives
throughout the project (helping to eliminate another problem, “feature
creep”). This does not mean to imply that changes cannot or do not
happen (they will, and should be encouraged), but the goals and
objectives of the project should remain constant. Failure to control for
these changes is a significant reason for project failure and must be
addressed in any robust software development methodology
(something Agile methodologies achieve quite well, but traditional
SDLC or “waterfall” methodologies are often criticized for handling
poorly).

Requirements Analysis

Nelson, Nelson & Ghodes (1998, p. 493) stated: “Structured
methods can make a difference to the long term performance of
software systems in many ways. Using structured methods can
effect development and maintenance team efficiency and
effectiveness. The overall quality and business value of the
delivered system can be improved. User satisfaction with
product attributes such as the format of information, the
content of information, ease of use of the system, timeliness of
information, and accuracy of information, as well as overall
user satisfaction have also been shown to be impacted by
structured methods.”

Utilization of structured development methodologies can not only
increase productivity of the developers but also their effectiveness.
Utilization of structured methodologies can also reduce the impact of
the differences in developers’ abilities by formalizing the knowledge
acquired by experienced developers (Yourdon, 1989; Nelson, Ghods,
& Nelson, 1998).

 Andrew Aken 319

Ewusi-Mensah (2003, p. 190) prescribes the following remedy to
how to alleviate many of the failures which lead to project
abandonment:

“In general, superior designs are likely to lead to superior
software if there are processes in place to guide the
development. As always, comprehensive knowledge and
understanding of the problem domain will be critical to a good
design. Good design, though always crucial, will not
automatically produce the quality software desired; managing
the development process is every bit as important. Because
software design is essentially a creative learning process, as the
team becomes more familiar with the requirements,
incremental steps can be taken to incorporate the various
functionalities that need to be satisfied…”

In Agile methodologies, initial positive early results often mask the
reality that the lack of an effective requirements analysis will make the
complete system untenable. In one of the earliest examples of a
significant software development project utilizing Agile
methodologies, the Chrysler Comprehensive Compensation system,
the first phase was by all accounts a complete success inviting the
accolades of anyone who subsequently subscribed to the eXtreme
Programming (XP) methodology. However, the lack of a significant
requirements analysis for this complex system doomed it to eventual
failure as it was never able to integrate completely with the rest of the
system or scale to its target utilization. The system never saw its 2nd
planned release even after 2 years of subsequent development
(Garzaniti, Haungs, & Hendrickson, 1997; Wikipedia, 2006). As
Boehm (2002, p. 67) states, “overfocus on early results in large
systems can lead to major rework when the architecture doesn’t scale
up. In such cases, a good deal of planning will be necessary.”

Empirical evidence shows that a comprehensive requirements
analysis & design reduces overall implementation & maintenance
costs. In their description of the “plan-driven” approaches to software
development, Nerur and Balijepally (2007, p. 80) also state that
“systematic problem decomposition is the key activity in analysis”
which must be completed prior to synthesis of the knowledge in the
system design. However, they also go on to state that simply
decomposition of the existing processes is insufficient to successful

320 JOURNAL OF INTERNET COMMERCE

system analysis. Analysts must also seek to learn the process to fully
understand it. The authors’ own experiences show that comprehensive
requirements analysis & design combined with component-based
development can increase quality (which reduces maintenance costs),
increases technology acceptance (by involving all of the key
stakeholders in the requirements analysis), yet can still achieve
incremental software delivery at “Internet Speed”.

Stakeholder Commitment

A fundamental element in Agile methodologies as well as a key
deficiency in many of the failed software development projects is
stakeholder commitment and involvement in the software development
process (particularly in the early phases of development). Ewusi-
Mensah (2003, p. 48) states that “user commitment and involvement
are critically important in helping to determine what the requirements
of the system should be. End users' active involvement in the
requirements phase is crucial for providing the software developers
with the requisite information to enable the analysis and design to
reflect fully the needs and circumstances of the user community.” He
goes on to state that particular attention needs to be paid to the
“situations and circumstances” with which the stakeholders will use
the software being developed.

Ewusi-Mensah (2003) goes on to define a process by which the
development team communicates with the stakeholders which is
similar to, but goes beyond, the framework suggested by Agile
methodologies. In Ewusi-Mensah’s model, which he refers to as the
stakeholder-interaction model (SIM), a triangle of communications
and interactions are established between the IS/technical staff, senior
management, and the users group. This process seeks to maximize the
desired features of the completed product within the constraints of the
available resources and completion schedule.

The hard-line approach that proponents of current Agile
methodologies take to relying on a small group of stakeholders
(frequently a single point of contact) has the effect of placing blinders
on the systems analysts and developers. It may simplify the process of
eliciting requirements and validating progress on the implementation
of the application, but at the expense of eliminating the input of other
key stakeholders. Reliance on the single customer point of contact to

 Andrew Aken 321

validate the correctness of the application within the rest of the
organization is insufficient (Nerur, Mahapatra, & Mangalaraj, 2005).
When pairing developers with individuals within the customer’s
organization, it often results in pluralistic decision-making
environment which can lead to increased conflict, trust issues, and
leaves other stakeholders in the organization at the mercy of the
customer contact (Nerur, Mahapatra, & Mangalaraj, 2005).

Another issue with requiring such close contact with the customer
during the implementation phase of the software development in the
Agile methodologies is that it precludes the utilization of disparate
teams which may have members located at various sites (Ambler,
2003) and would eliminate or hamper efforts to use outsourcing,
virtual teams, etc.

Embrace Change

During the project lifetime, requirements change 25% or more
(Boehm, 2002). Agile development is touted as being typically most
beneficial when change occurs frequently whereas traditional
methodologies are not responsive to change. Requirements are set at
the beginning and are difficult to change and requested changes are
typically not presented to the customer in usable form until after the
project is completed.

Describing one of the guiding principles of Agile methodologies,
the Agile Manifesto (Agile Alliance, 2001) states:

“Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive
advantage. The growing unpredictability of the future is one of
the most challenging aspects of the new economy.
Turbulence—in both business and technology—causes change,
which can be viewed either as a threat to be guarded against or
as an opportunity to be embraced.

Rather than resist change, the agile approach strives to
accommodate it as easily and efficiently as possible, while
maintaining an awareness of its consequences. Although most
people agree that feedback is important, they often ignore the
fact that the result of accepted feedback is change. Agile

322 JOURNAL OF INTERNET COMMERCE

methodologies harness this result, because their proponents
understand that facilitating change is more effective than
attempting to prevent it.”

Use the Strengths of Every Developer

All of the Agile methodologies put a premium on having the
absolute best personnel and work best with first-rate, versatile,
disciplined developers and stakeholders who are highly skilled and
highly motivated. Not only do you need developers with significant
skills in a variety of areas (technical as well as interpersonal), but they
also must possess exceptional discipline and motivation and be willing
to work at a very high level with someone sitting beside them
watching every move (Boehm, 2002). These characteristics are
estimated to be present in only a small percentage of developers. As
Boehm so eloquently puts it, over 49% of software developers are
below average.

To be capable of being used within any organization, software
development methodologies must be able to use developers,
management, and users at all skill levels. Simply because a particular
developer doesn’t possess all of the requisite skills to be an effective
Agile developer, doesn’t mean that they can’t contribute to the
development process. Some of the best developers in the world have
practically no interpersonal skills, but that doesn’t make them
ineffective if they can be allowed to work within their strengths.

Scale to Fit Any Project

Anything other than a trivial application (where triviality is
determined based upon the complexity of the application, the number
of users, as well as the strategic orientation of the application) requires
rigorous software analysis and design. Because of this, utilization of
current Agile methodologies doesn’t scale well to large projects
(Sliwa, 2002). When Constantine (2001) surveyed his colleagues who
were proponents of “light” methods (which is how he describes Agile
methodologies), they agreed that the Agile methodologies do not
readily scale up beyond a certain point. Constantine stated that the
general consensus was that 12 to 15 developers is the upper limit for
most Agile projects. The primary reason for this problem is because of

 Andrew Aken 323

the tightly coordinated teamwork which is needed for these methods to
succeed.

Summary

MacCormack (2001) specifies the four factors which most
contribute to the success of a software development project as:

• An early release of the evolving product design to the key
stakeholders

• Iterative software development with frequent releases to the
stakeholders and rapid feedback

• Teams comprised of people with broad-based experiences
• Major investment in the design of the product architecture

Both Agile and traditional SDLC-driven methods possess
characteristics in which each clearly works better than the other for
each of these factors and the other sources of failure demonstrated
earlier. Hybrid approaches that combine both types of methodologies
are feasible and necessary for just about every project type (Boehm,
2002). In the following section, we will propose a software
development methodology which incorporates each of the facets of a
methodology which were enumerated earlier to construct such a hybrid
in order to increase the likelihood of the success of a software
development implementation.

CHUNK

CHUNK is a software development methodology which
incorporates many of the fundamental principles of the Agile
methodologies within the traditional SDLC while removing many of
the unnecessarily restrictive or superfluous components of the Agile
methods (see FIGURE 2 below). This results in CHUNK combining a
top-down and bottom-up approach to software development (where
Agile methods typically use a bottom-up approach and the SDLC is
predominately a top-down approach).

CHUNK can be more formally classified as a component-based or
iterative software development methodology. Component-based
software development has existed for decades, even prior to

324 JOURNAL OF INTERNET COMMERCE

methodological formalization. Although the methodology is language
independent, a fundamental goal of its organization and design was to
facilitate development and implementation through the utilization of
object-oriented language constructs to develop the identified
components.

Although the phases in this process are generally meant to be
executed sequentially, or as otherwise indicated, unlike the traditional
(although inaccurate) view of the “waterfall” methodology, it is
expected that earlier phases can be revisited in the manners prescribed.
Frequently, invocation of a subsequent step in the software
development process results in new insights or requirements which
must be incorporated into the project. The methodology, however,
must be capable of handling these changes without significant
disruption in the overall development process.

The subsequent sections describe in more detail each of the phases
of the development process prescribed by CHUNK and illustrated in
the framework in FIGURE 2.

FIGURE 2. CHUNK Development Framework

 Andrew Aken 325

Awareness

Awareness of a problem to be solved can be arrived at through the
initiative or innovation of an individual or group within an
organization, a request for a unique solution from a customer, or the
outgrowth of a strategic IS plan (Peffers, Gengler, & Tuunanen, 2003).
Once an organization becomes aware of the need, an initial evaluation
of the project needs to be made as to whether the organization will
pursue the project. The project will then be setup in the Software
Configuration Management system (SCM). Utilization of an SCM is
necessary for maintaining documentation, tracking progress, and
managing the code. All artifacts of the development process will be
made accessible through the SCM.

Selection of the project team will also be accomplished at this
point. In most situations, the ideal project team will be comprised of: a
business analyst who should have an understanding of general
business processes and how to integrate them with IT; a systems
analyst who will have a general understanding of business processes,
systems analysis, and development methodologies; a software engineer
who will have a solid understanding of the software development
process; and key stakeholders (e.g. product champions) who have an
understanding of the domain of the system being developed and what
the new system is to accomplish.

Scope Analysis

The scope analysis phase of the software development process is
where the key stakeholders involved in the project are identified and
the goals and objectives of the software project are established.

Stakeholder Analysis

Stakeholder analysis involves understanding who affects or is
affected by the system under development (Robinson & Volkov,
1997). This will include not only the users of the system, but those
individuals, groups, and organizations that are impacted by the system,
those who are responsible for participating in the development of the
system, senior management within the organization (Ewusi-Mensah,
2003), and other systems which must interact with the one under
development.

326 JOURNAL OF INTERNET COMMERCE

In general, the users stakeholder group provides the most robust
and ambitious requirements for the new system. Including the
development group in the list of stakeholders helps to insure that the
eventual requirements for the system are practical and can be
accomplished with currently available technology and skills within the
group. Including senior management in the list of stakeholders is
necessary to insure that a practical limit is set to the scope of the
project.

Goals and Objectives

Establishment of the goals and objectives of the project under
development is necessary whether the project is being developed for
use exclusively internally, for a client, or for commercial software.
The goals and objectives of the software project will identify the major
features or purposes of the software being developed, a recommended
completion date, and an initial budget. This part of the scope analysis
enables the project team to identify what the finished software project
is intended to accomplish. It also establishes the objectives for
determining when the project is completed.

System Analysis

The system analysis phase of the software development model
focuses on the evaluation and analysis of existing processes,
procedures, and systems. System analysis consists of collecting,
organizing, and evaluating facts about the existing system and the
environment in which it operates (including equipment, personnel,
operating conditions, and the system’s internal and external demands)
(Couger, 1973). Common sources for this information can be found in
the organization’s existing documentation (e.g. procedure manuals),
the current applications, corporate intranet, or from personnel.

This phase in the software development process is necessary in
order to understand the processes and systems that are to be replaced
so that the solicitation of requirements from the stakeholders can be
done intelligently. Once a general understanding of how the process is
currently implemented, determining what questions need to be asked
of the stakeholders becomes much easier and more detailed
information can be collected and potential gaps in what is required of
the final system may be eliminated.

 Andrew Aken 327

Requirements Analysis

Many methods have been used for arriving at the user requirements
for the system under development. Unfortunately, in practice, one of
the most frequently used is to take the initial project request with
perhaps an individual’s or small group’s additional guidance as the
complete requirements specification. This often results in a system
which is less than adequate to meet the customer’s needs, can’t
integrate with the related systems, can’t scale to the necessary size,
and ultimately fails or is infrequently used.

Requirements elicitation and analysis is generally considered one
of the most difficult aspects of the traditional software development
process (Browne & Rogich, 2001). Avoiding the comprehensive
requirements analysis component of software development is one of
the reasons Agile methodologies have achieved their allure, but which
ultimately reduces the likelihood of success for the project. If properly
executed, requirements analysis can not only result in developing
systems that the users are more satisfied with, but can also ease the
development effort.

An additional benefit to a comprehensive requirements elicitation
and analysis is that by involving the stakeholders in the development
process, the future buy-in into the completed system becomes much
more likely. One of the ways that projects have been termed as failures
is if the software is unused after completion. This possibility can be
significantly reduced by getting the stakeholders to participate in its
development and thus increase the buy-in to the final product.

Requirements analysis also needs to identify how the different
stakeholders interact. Interactions occur whenever 2 or more
requirements are dependent upon each other. Negative interactions
(conflicts) occur when one requirement interferes with one of the other
requirements, often from another stakeholder (Robinson & Volkov,
1997). A process for dealing with these conflicts is also necessary to
enable successful project completion.

Three methods for eliciting and analyzing requirements
specifications from the stakeholders are interviews & surveys, use case
analysis, and task shadows. These are only 3 of the possible methods
that can be used within Chunk, but together they allow for the
elicitation of the most robust and complete requirements of the system
under development.

328 JOURNAL OF INTERNET COMMERCE

Interviews and Surveys

One of the most misunderstood, misapplied, and mistake-prone
methods of user requirements elicitation is the use of the interview.
Too often, questions in the interview process do not elicit a complete
view of the system to be developed. A comprehensive interview script
needs to include questions to elicit responses to the who, what, when,
where, how, and why of the system being developed. Browne and
Rogich (2001) detail a process which will allow the analysts to educe
customer requirements in a generalized format which can be easily
integrated into the CHUNK process.

Use Cases

Use Cases describe the system’s behavior under various conditions
as it responds to a request from one of the stakeholders. In the
development of a use case, the stakeholder describes an interaction
with the system to accomplish some goal. The system then delivers an
appropriate response based upon the input of the stakeholder
(Cockburn, 2000). Use cases are helpful not only as a method of
eliciting stakeholder requirements, but provide important input to the
developers who can use the analysis directly in the implementation of
the system, the technical writers who must describe how to use the
system, and the testers who can utilize the Use cases in the
development of their test suites (Bittner, 2002).

Task Shadowing

Another concept which can be used as a method for eliciting user
requirements is the use of Task Shadows. With this technique, users of
the existing system for performing the tasks to be implemented in the
new system (whether it is an existing IS or manual process) will be
shadowed by someone who will keep track of each of the steps the
user goes through while performing the task. One of the problems
typically associated with interviews and Use Cases (as well as other
techniques for eliciting user requirements) is that much of the
knowledge about how a task is performed is tacit (e.g., the user isn’t
even aware of what they go through to perform a given task). In many
situations, users have had to develop workarounds for deficiencies in
the current processes that they may not even be aware of. By
shadowing users as they are performing the tasks, seemingly
insignificant details about how the task is accomplished can be

 Andrew Aken 329

documented and implemented in the new system. If personnel cannot
be allocated to each group of users, having the users keep a log of each
step they go through while performing the tasks can elicit some of the
details they may not have otherwise considered important.

Preliminary Design

Once the stakeholder requirements have been collected, analyzed
and input into the SCM, development of an initial design of the system
can begin. This is a preliminary conceptual design of the system which
will describe the inputs and outputs of the system and the procedures
used in processing those inputs to produce the required outputs.

This is the first phase of the development process which begins to
look at the underlying architecture of the system under development.
Major components, processes, or modules of the system will be
identified in this phase which will be further refined once initial
stakeholder feedback is received. To better enable a consistent
description of the system for subsequent phases, design refinements,
input into a modeling application, and future reuse, an Architecture
Description Language (ADL) such as the type proposed by Dashofy,
Hoek & Taylor (2005) should be used to define the relationships
between the modules.

In addition to the initial component-based architecture which is
defined in this phase, the Human Computer Interaction (HCI)
components of the application will also be developed. HCI includes all
aspects of the system that impact its users or other stakeholders.
Although the user interface is one of the most noticeable components
of the HCI and is key to the systems eventual acceptance, it is not the
only part of the HCI development (Zhang, Carey, Te'eni, & Tremaine,
2005).

During the preliminary design phase of the software development
process, issues relating to conflicts in requirements analysis will
frequently be identified. As much as possible, analysts and developers
should document reasons for deviations from, or omissions of requests
for, features from the requirements analysis to ensure that subsequent
concerns about these alterations can be properly justified.

330 JOURNAL OF INTERNET COMMERCE

Prototype

Prototyping of an application can take several forms: illustrative
(screen shots), simulated (data flow), functional (limited subset of
function), and evolutionary (Connors, 1992). For CHUNK, this phase
of the process will involve the first 2 forms of prototyping where the
initial User Interface (UI) design and process flow diagrams will be
developed. Functional and evolutionary forms of the prototyping
method should be avoided as developers often will exhibit resistance
to discarding the work that went into the development of these
functional prototypes (Ewusi-Mensah, 2003).

Several benefits to developing prototypes in this way have been
identified. Stakeholders in the system may not know exactly what they
want out of the system even after the requirements analysis and the
prototype provides the user with additional information with which
they can make a more informed decision as to whether or not the
application under development will meet their needs. Additionally, the
prototyping phase can more accurately define the scope of the ensuing
system. Changes made at this phase can be 6-10 times less expensive
than once the system has entered the implementation phase (Connors,
1992).

Stakeholder Feedback

Although nothing in this software development process precludes
the design team from reiterating or revising any of the previous phases
(e.g. interviews and use case analysis in the requirements analysis
phase may identify new stakeholders which may require revisiting the
Scope Analysis and subsequent phases), all of the previous phases are
designed to be completed in sequence. The Stakeholder Feedback
phase of the methodology, however, is intended to be executed
multiple times throughout the system development lifecycle.

The initial pass through the stakeholder feedback phase is designed
to elicit stakeholder feedback to the preliminary design and prototypes
that have been developed. This process is intended to raise any
additional issues or concerns with the initial design and scope of the
application. Discussion will also revolve around the conflicts
identified in the requirements analysis and preliminary design phases
to address the decisions made by the design team regarding which

 Andrew Aken 331

elements were included and why some elements may have had to be
excluded from the design. Further refinement of the prototypes will
also be focused on in the initial pass through the stakeholder feedback
phase. Prioritization of the components (functions and tasks to be
implemented in a release) to be completed from the stakeholder’s
perspective will also be necessary.

Subsequent iterations of the stakeholder feedback phase will
address the validation of the completed releases of the software project
as well as requests for modifications to be made to the requirements,
the completed releases, and component prioritization. It is imperative
to the success of a project that as many stakeholder groups as possible
be represented in the stakeholder feedback sessions. The frequency of
these sessions relates to the size and scope of each of the release
design and is also positively related to the project success (e.g. the
smaller the release, the more frequent the stakeholder feedback
iterations, and consequently the greater chance of success for the
project).

Because of the intensity of communications among stakeholders in
this phase of the development process, methods for coordinating these
activities need to be used. One of these methods could include the use
of Rapid Application Development (RAD) sessions. RAD techniques
seek to bring order to the relative chaos of the system design at this
phase in the development process. Its primary purpose is to take the
initial system concept and turn it into a working system design which
adds value to the business operation in a relatively short period of time
(Howard, 2002) while having the input of the primary stakeholder
groups.

If this is not the initial iteration of the stakeholder feedback phase
and no modifications to the plan have been identified, the development
process can proceed to the release design phase.

Top-level System Design

Upon completion of the initial iteration of the stakeholder feedback
phase of the development lifecycle, the top-level system design can
proceed. At this point, the initial requirements of the system from the
stakeholder’s perspective have been elicited and input into the SCM,
the requirements have been coalesced into a validated requirements
specification, and a prototype of the user interface and data flow have
been completed and also input into the SCM. With this comprehensive

332 JOURNAL OF INTERNET COMMERCE

body of information which has been reviewed and verified by the
stakeholders, the system design can proceed with relative speed.
Possessing a comprehensive understanding of the needs of the
stakeholders and prototypes of the system to be developed eliminates
much of the uncertainty which often accompanies a system design.

This initial iteration of the top-level system design involves
developing the module definitions, interfaces and communications
between modules, as well as hardware and software requirements and
the environment in which the application is to be run. Subsequent
iterations of this phase will revise the top-level design if necessary to
accommodate requests for changes to the system that were expressed
during the stakeholder feedback phases.

The modules are those segments of the application which can be
developed independently and which are designed to perform a specific
task. In object-oriented systems, a module would be a class or a tightly
defined set of classes in a particular hierarchy. In procedurally
developed systems, a module may be implemented as a code library to
implement a discrete task or function.

In order to improve the reliability and ease of development,
modules should be designed to minimize tight coupling and
interdependencies. The more independently modules can be designed,
the easier the tasks of implementation, testing, and maintenance
become.

Module Prioritization

Outside of the component prioritization in the stakeholders
feedback phase, module prioritization must also be specified as certain
modules may be used across multiple components or within multiple
releases. As a general guideline for determining the priority of
modules implemented early in the software development, the
following criteria should be considered:

Modules with larger number of interdependencies should be
implemented earliest in the software development (they require the
greatest amount of specification, documentation, and testing)

• Modules which provide UI capabilities
• Initial product functionality modules
• Remaining modules required for the current release

 Andrew Aken 333

Release Design

The release design phase is primarily focused on defining the
components and modules to be implemented in the release and
defining the criteria used for testing its implementation. The test suites
developed for the release will need to be added to the SCM and should
be based upon the use case analysis and prototypes developed during
the analysis and design of the software application. This phase will
also determine the personnel needed to perform the tasks necessary for
the implementation and testing of the release. Modules to be
implemented into the release will be added to the SCM at this point as
well.

Module Design and Implementation

Because the implementation of the project is isolated from the
processes involved in the analysis, design, and stakeholder feedback,
the Module Design and Implementation phase can be implemented at
any location which has accessibility to the SCM. This enables the
utilization of outsourcing of the programming of the application and
the utilization of programmers who may be very skilled in coding, but
who may lack skills necessary for other development methodologies.
Since the programming is typically a significant cost associated with
application development, this can have the effect of significantly
lowering the overall costs of the project.

Additionally, since the definitions and interfaces of the modules
incorporated into a release and all of the analysis and design
documentation is available through the SCM, work on the modules can
generally be handled concurrently. The only exception may be those
modules which have been identified as having a high degree of
interdependency which may have to be completed before work on
other modules can begin.

Common to each of the steps involved with module design and
implementation is extensive documentation within the code and the
SCM. Fundamental components of the documentation include (but are
not limited to):

Change management (documenting all changes to the software,
who made the changes, what the original code included, purpose of the
change)

334 JOURNAL OF INTERNET COMMERCE

Interdependencies (all modules that use the module under
development MUST be documented in the module heading. This
provides a test suite to ensure that changes to the module can be tested
properly and interface changes can be readily adapted to the rest of the
system)

Many of these documentation requirements can be automated
through the use of the SCM

Additionally, proper documentation, module-level analysis and
design, and comprehensive testing of individual components will
allow developers to maximize the reusability of their code developed
within this framework. Warehouses of the developed modules with
their corresponding documentation will make the modules available to
other developers and for other projects maximizing their reusability.

For each module to be developed for the current release of the
project, the following processes will need to be completed:

Module Analysis and Design (MAD)

In this process, a bottom-up approach to the system development
process will be used. A more comprehensive design of the activities
and functions involved in the module will be completed (the Top-
Level System Design only defines the principle functions of the
modules and how they will communicate with other modules).

Determine test suite for module

Before the coding of the module is begun, generating a test suite
for the module based upon the module description and the use case
analysis will need to be defined. Careful attention needs to be paid
especially to the inputs and outputs through the defined interfaces of
the module as well as bounds checking on all constructs. The test suite
must also be added to the SCM to ensure that when this module needs
to be re-tested, the complete test suite is readily available.

Document module interdependencies

Although primary interdependencies have already been identified,
there may be additional module interdependencies discovered during
the implementation of the modules. Proper documentation of
interdependencies is necessary to ensure that when changes to a
module occur, all other modules which depend on the changed module

 Andrew Aken 335

can be re-tested. The SCM should be able to automatically determine
and add the dependency hierarchy to the module definition.

Code module

Many methods have been proposed to increase the productivity or
correctness of the actual code used to implement a software system.
Pair programming is one of these methods which has shown some
promising results and can be used, but it is not mandated.

Test module

Once the initial module programming is completed, the defined
tests for the module will need to be executed. Any additional tests
identified during the coding or testing of the module will also need to
be added to the SCM and executed.

Roll out module

Once the testing is complete successfully and all appropriate
documentation and test suites have been added to the software
configuration management system, the module can be marked as
complete and stored in the SCM.

Release Completion

Once all of the modules that have been identified as a part of the
release have been completed, the modules will be combined into a
single release and the required component and functional testing of the
release can begin. Any errors or deficiencies can be identified and
communicated to the developers of the module and the release
coordinator. Once an acceptable level of success has been achieved,
the release can be marked as completed.

Once a release is complete, it will be rolled out for utilization and
work can begin on the next release of the project. At this point, the
process will return to the phase to elicit stakeholder feedback (if
applicable) for an acceptance test and requests for modifications to the
current release or future releases. If change requests occur, they will be
rolled into the project through the re-iteration of the Top-level System
Design.

336 JOURNAL OF INTERNET COMMERCE

Maintenance

Once the final release has been completed and final acceptance
tests have been performed by the stakeholders, the project is complete
and will move into the Maintenance phase. In addition to performing
bug fixes and adding functionality to the system, once the project
moves into the Maintenance phase, a post-mortem of the development
process will be completed. The post-mortem requires the artifacts of
the development process (which are non-existent in the Agile
methodologies) to learn from and improve upon future development
projects.

CONCLUSION

It has been established that there is a need for a proper framework
for software development and that this framework should include:

• support for an iterative development process,
• clear goals and objectives which need to be expressly defined,
• a comprehensive requirements analysis,
• stakeholders need to be identified and committed to the process,
• a formal change process needs to be used,
• the skills of everyone involved in the implementation need to be

employed,
• the process should be scalable.

CHUNK is a methodology which has been proposed to address
each of these issues in order to achieve a greater probability of the
successful completion of the application development process. This
methodology incorporates many of the benefits of Agile development
techniques into the SDLC with much more rigorous Analysis and
Design and revolves around component-based incremental releases.

No development methodology can guarantee success of a software
project implementation. However, lack of an appropriate development
methodology may lead to the failure of the project before it even
begins. Project failure in itself would not result in a disaster for the
organization so long as the failure occurs before significant resources
have been expended towards the project, however. Consequently, if a
project is to fail, identifying the failure early on in the development

 Andrew Aken 337

process prior to implementation would be the ideal situation. With the
comprehensive analysis and design and stakeholder feedback which
are primary components of CHUNK, it is more likely that a project
may be identified as untenable before the expenditure of the much
larger number of resources for its implementation.

Another primary feature in the design of Chunk is that the
implementation of the project is isolated from the processes involved
in the analysis, design, and stakeholder feedback (unlike other Agile
methodologies). Consequently, distribution of the majority of the work
in the implementation of the software project is fairly uncomplicated.
This allows the utilization of programmers which do not have the
significant interpersonal skills required by Agile methodologies and
which may be located at diverse locations.

Consequently, utilization of CHUNK can contribute to the rapid
delivery of software rolled out in phases, lower the costs associated
with the implementation of the software, and provide the greatest
likelihood of project success.

REFERENCES

Agile Alliance. (2001). Manifesto for Agile software development.
Retrieved May 19, 2008, from The Agile Manifesto:
http://www.agilemanifesto.org

Ambler, S. W. (2003, October 1). Chicken Little was right. Retrieved
May 19, 2008, from Dr. Dobb's Journal:
http://www.ddj.com/architect/184415045

Baskerville, R., & Pries-Heje, J. (2004). Short cycle-time systems
development. Information Systems Journal , 14 (3), 237-164.

Bennett, K. (1991). Automated support of software maintenance.
Information & Software Technology , 33 (1), 74-85.

Bittner, K. (2002). Use Case Modeling. Boston: Addison-Wesley
Longman Publishing Co., Inc.

Boehm, B. (2002). Get ready for Agile methods, with care. Computer ,
35 (1), 64-69.

Boehm, B., & Basili, V. R. (2001). Software defect reduction top 10
list. Computer , 34 (1), 135-137.

Browne, G. J., & Rogich, M. B. (2001). An empirical investigation of
user requirements elicitation: Comparing the effectiveness of

338 JOURNAL OF INTERNET COMMERCE

prompting techniques. Journal of Management Information
Systems , 17 (4), 223-249.

Cockburn, A. (2000). Writing Effective Use Cases (1st Edition ed.).
Boston: Addison-Wesley Longman Publishing Co., Inc.

Connors, D. T. (1992). Software development methodologies and
traditional and modern information systems. ACM SIGSOFT
Software Engineering Notes , 17 (2), 43-49.

Constantine, L. (2001, June). Methodological Agility. Software
Development , pp. 67-69.

Couger, J. D. (1973). Evolution of business system analysis
techniques. ACM Computing Surveys , 5 (3), 167-198.

Dashofy, E. M., Hoek, A. v., & Taylor, R. N. (2005). A
comprehensive approach for the development of modular
software architecture description languages. ACM Transactions
on Software Engineering and Methodology , 14 (2), 199-245.

Ewusi-Mensah, K. (2003). Software Development Failures.
Cambridge: MIT Press.

Garzaniti, R., Haungs, J., & Hendrickson, C. (1997). Everything I need
to know I learned from the Chrysler payroll project.
Conference on Object Oriented Programming Systems
Languages and Applications (pp. 33-38). Atlanta: ACM.

Glass, R. L. (2003). A mugwump's-eye view of Web work.
Communications of the ACM , 46 (8), 21-23.

Glass, R. L. (2006). The Standish report: does it really describe a
software crisis? Communications of the ACM , 49 (8), 15-16.

Hartman, D. (2006). Interview: Jim Johnson of the Standish Group.
Retrieved October 7, 2006, from
http://www.infoq.com/articles/Interview-Johnson-Standish-
CHAOS

Howard, A. (2002). Rapid Application Development: rough and dirty
or value-for-money engineering? Communications of the ACM
, 45 (10), 27-29.

MacCormack, A. (2001). Product-development practices that work:
How Internet companies build software. MIT Sloan
Management Review , 42 (2), 75-84.

Nelson, K. M., Ghods, M., & Nelson, H. J. (1998). Measuring the
effectiveness of a structured methodology: A comparative
analysis. Proceedings of the Thirty-First Annual Hawaii

 Andrew Aken 339

International Conference on System Sciences. 6, pp. 492-499.
Hilo, HI: IEEE Computer Society.

Nerur, S., & Balijepally, V. (2007). Theoretical reflections on Agile
development methodologies. Communications of the ACM , 50
(3), 79-83.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of
migrating to Agile methodologies. Communications of the
ACM , 48 (5), 72-78.

Peffers, K., Gengler, C. E., & Tuunanen, T. (2003). Extending critical
success factors methodology to facilitate broadly participative
information systems planning. Journal of Management
Information Systems , 20 (1), 51-85.

Poole, D. (2006). Breaking the major release habit. Queue , 4 (8), 46-
51.

Robinson, W. N., & Volkov, S. (1997). A meta-model for
restructuring stakeholder requirements. Proceedings of the 19th
international conference on Software engineering (pp. 140-
149). Boston: ACM.

Sliwa, C. (2002, March 14). Agile programming techniques spark
interest. Retrieved March 12, 2007, from ComputerWorld:
http://www.computerworld.com/action/article.do?command=pr
intArticleBasic&articleId=69079

The Hackett Group. (2003). Profile of World-Class IT. London: The
Hackett Group.

Wikipedia. (2006). Chrysler Comprehensive Compensation System.
Retrieved October 23, 2006, from
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compe
nsation_System

Yourdon, E. (1989). Modern Structured Analysis. Upper Saddle River,
NJ: Yourdon Press.

Zhang, P., Carey, J., Te'eni, D., & Tremaine, M. (2005). Integrating
human-computer interaction development into the systems
development life cycle: a methodology. Communications of the
AIS , 15, 512-543.

RECEIVED: February 10, 2008

REVISED: March 23, 2008
ACCEPTED: April 15, 2008

