
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Client-Side JavaScript
Reference

Version 1.3
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1999 Netscape Communications Corporation. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation.
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

Version 1.3

©1999 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

New Features in this Release
JavaScript version 1.3 provides the following new features and enhancements:

• ECMA compliance. JavaScript 1.3 is fully compatible with ECMA-262. See
the Client-Side JavaScript Guide for details.

• Unicode support. The Unicode character set can be used for all known
encoding, and you can use the Unicode escape sequence in string literals.
See escape and unescape . See the Client-Side JavaScript Guide for
details.

• Changes to the Array object.

• When you specify a single numeric parameter with the Array
constructor, you specify the initial length of the array.

• The push method returns the new length of the array rather than the last

element added to the array.

• The splice method always returns an array containing the removed
elements, even if only one element is removed.

• The toString method joins an array and returns a string containing
each array element separated by commas, rather than returning a string
representing the source code of the array.

• The length property contains an unsigned, 32-bit integer with a value

less than 232.
3

• Changes to the Date object.

• Removed platform dependencies to provide a uniform behavior across
platforms.

• Changed the range for dates to -100,000,000 days to 100,000,000 days
relative to 01 January, 1970 UTC.

• Added a milliseconds parameter to the Date constructor.

• Added the getFullYear , setFullYear , getMilliseconds , and
setMilliseconds methods.

• Added the getUTCDate , getUTCDay , getUTCFullYear ,
getUTCHours , getUTCMilliseconds , getUTCMinutes ,
getUTCMonth , getUTCSeconds , setUTCDate , setUTCFullYear ,
setUTCHours , setUTCMilliseconds , setUTCMinutes ,
setUTCMonth , setUTCSeconds , and toUTCString methods.

• Added a day parameter to the setMonth method.

• Added minutes, seconds, and milliseconds parameters to the setHours
method.

• Added seconds and milliseconds parameters to the setMinutes
method.

• Added a milliseconds parameter to the setSeconds method.

• Added a milliseconds parameter to the UTC method.

• Deprecated the getYear , setYear , and toGMTString methods.

• Changes to the Function object.

• Added the apply method, which allows you to apply a method of
another object in the context of a different object (the calling object).

• Added the call method, which allows you to call (execute) a method
of another object in the context of a different object (the calling object).

• Deprecated the arguments.caller property.
4 Client-Side JavaScript Reference

• Changes to the String object.

• The charCodeAt and fromCharCode methods use Unicode values
rather than ISO-Latin-1 values.

• The replace method supports the nesting of a function in place of the
second argument.

• New method toSource. The toSource method returns a string
representing the source code of the object. See Array.toSource ,
Boolean.toSource , Date.toSource , Function.toSource ,
Number.toSource , Object.toSource , RegExp.toSource , and
String.toSource .

• New top-level properties Infinity, NaN, and undefined. Infinity is a
numeric value representing infinity. NaN is a value representing Not-A-
Number. undefined is the value undefined.

• New top-level function isFinite. isFinite evaluates an argument to
determine whether it is a finite number.

• Changes to the top-level eval function. You should not indirectly use the
eval function by invoking it via a name other than eval .

• New strict equality operators === and !==. The === (strict equal)
operator returns true if the operands are equal and of the same type. The
!== (strict not equal) operator returns true if the operands are not equal
and/or not of the same type. See “Comparison Operators” on page 635 and
“Using the Equality Operators” on page 637.

• Changes to the equality operators == and !=. The use of the == (equal)
and != (not equal) operators reverts to the JavaScript 1.1 implementation. If
the two operands are not of the same type, JavaScript attempts to convert
the operands to an appropriate type for the comparison. See “Using the
Equality Operators” on page 637.
5

• Changes to the behavior of conditional tests.

• You should not use simple assignments in a conditional statement; for
example, do not specify the condition if(x = y) . Previous JavaScript
versions converted if(x = y) to if(x == y) , but 1.3 generates a
runtime error. See “if...else” on page 623.

• Any object whose value is not undefined or null , including a
Boolean object whose value is false, evaluates to true when passed to a
conditional statement. See “Boolean” on page 51.

• The JavaScript console. The JavaScript console is a window that can
display all JavaScript error messages. Then, when a JavaScript error occurs,
the error message is directed to the JavaScript console and no dialog box
appears. See the Client-Side JavaScript Guide for details.
6 Client-Side JavaScript Reference

Contents

New Features in this Release ...3

About this Book ..13

New Features in this Release ..13

What You Should Already Know ...13

JavaScript Versions ..14

Where to Find JavaScript Information ..15

Document Conventions ...16

Part 1 Object Reference

Chapter 1 Objects, Methods, and Properties19

Anchor ..20

Applet ...25

Area ..27

Array ...28

Boolean ..51

Button ...56

Checkbox ...64

Date ..72

document ...108

event ...143

FileUpload ..151

Form ...157

Frame ..168

Function ...169

Hidden ..190

History ..194

Image ..201

java ...214
Contents vii

JavaArray ... 215

JavaClass .. 218

JavaObject .. 219

JavaPackage ... 221

Layer .. 222

Link .. 238

Location ... 251

Math ... 269

MimeType .. 288

navigator .. 292

netscape ... 303

Number .. 304

Object .. 313

Option .. 324

Packages .. 333

Password ... 337

Plugin ... 344

Radio .. 349

RegExp ... 359

Reset .. 381

screen ... 389

Select .. 392

String .. 404

Style ... 442

Submit .. 468

sun ... 475

Text .. 476

Textarea ... 485

window .. 496
viii Client-Side JavaScript Reference

Chapter 2 Top-Level Properties and Functions 555

escape .. 556

eval ... 558

Infinity .. 560

isFinite .. 561

isNaN .. 561

NaN .. 562

Number .. 563

parseFloat .. 564

parseInt .. 565

String .. 567

taint .. 568

undefined ... 569

unescape .. 569

untaint .. 570

Chapter 3 Event Handlers ... 573

onAbort .. 575

onBlur .. 576

onChange ... 578

onClick ... 579

onDblClick ... 582

onDragDrop .. 583

onError ... 584

onFocus ... 587

onKeyDown .. 589

onKeyPress .. 590

onKeyUp .. 592

onLoad ... 593

onMouseDown .. 596

onMouseMove ... 599

onMouseOut .. 600

onMouseOver .. 601

onMouseUp ... 602
Contents ix

onMove .. 603

onReset .. 605

onResize .. 606

onSelect ... 607

onSubmit ... 608

onUnload ... 609

Part 2 Language Elements

Chapter 4 Statements .. 613

break .. 615

comment .. 616

continue ... 617

do...while ... 618

export .. 619

for ... 620

for...in .. 621

function .. 622

if...else .. 623

import .. 624

label ... 625

return ... 625

switch ... 626

var .. 627

while .. 628

with .. 629
x Client-Side JavaScript Reference

Chapter 5 Operators ... 631

Assignment Operators ... 634

Comparison Operators .. 635

Using the Equality Operators ... 637

Arithmetic Operators ... 638

% (Modulus) .. 638

++ (Increment) .. 639

-- (Decrement) .. 639

- (Unary Negation) ... 639

Bitwise Operators .. 640

Bitwise Logical Operators .. 641

Bitwise Shift Operators ... 641

Logical Operators .. 643

String Operators .. 645

Special Operators .. 645

?: (Conditional operator) .. 645

, (Comma operator) .. 646

delete ... 646

new .. 648

this ... 650

typeof .. 651

void ... 652

Part 3 LiveConnect Class Reference

Chapter 6 Java Classes, Constructors, and Methods 655

JSException .. 656

JSObject ... 658

Plugin ... 662
Contents xi

Part 4 Appendixes
Appendix A Reserved Words ... 667

Appendix B Color Values .. 669

Appendix C Netscape Cookies ... 675

Index .. 681
xii Client-Side JavaScript Reference

About this Book
JavaScript is Netscape’s cross-platform, object-based scripting language for
client and server applications. This book is a reference manual for the
JavaScript language, including both core and client-side JavaScript.

This preface contains the following sections:

• New Features in this Release

• What You Should Already Know

• JavaScript Versions

• Where to Find JavaScript Information

• Document Conventions

New Features in this Release
For a summary of JavaScript 1.3 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know
This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.
13

JavaScript Versions
JavaScript Versions
Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0–4.05

JavaScript 1.3 Navigator 4.06–4.5

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0
14 Client-Side JavaScript Reference

Where to Find JavaScript Information
Where to Find JavaScript Information
The client-side JavaScript documentation includes the following books:

• The Client-Side JavaScript Guide provides information about the JavaScript
language and its objects. This book contains information for both core and
client-side JavaScript.

• The Client-Side JavaScript Reference (this book) provides reference material
for the JavaScript language, including both core and client-side JavaScript.

If you are new to JavaScript, start with the Client-Side JavaScript Guide. Once
you have a firm grasp of the fundamentals, you can use the Client-Side
JavaScript Reference to get more details on individual objects and statements.

If you are developing a client-server JavaScript application, use the material in
the client-side books to familiarize yourself with core and client-side JavaScript.
Then, use the Server-Side JavaScript Guide and Server-Side JavaScript Reference
for help developing a server-side JavaScript application.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you’re working with JavaScript. The following URLs are of
particular interest:

• http://developer.netscape.com/docs/manuals/
javascript.html

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

• http://developer.netscape.com/docs/manuals/

The DevEdge library contains documentation on many Netscape products
and technologies.

• http://developer.netscape.com

The DevEdge home page gives you access to all DevEdge resources.
15

Document Conventions
Document Conventions
Occasionally this book tells you where to find things in the user interface of
Navigator. In these cases, the book describes the user interface in Navigator 4.5.
The interface may be different in earlier versions of the browser.

JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http:// server.domain / path / file .html

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet
domain name, such as netscape.com or uiuc.edu ; path represents the
directory structure on the server; and file.html represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

• Boldface type is used for glossary terms.
16 Client-Side JavaScript Reference

1
Object Reference
• Objects, Methods, and
Properties

• Top-Level Properties and
Functions

• Event Handlers

18 Client-Side JavaScript Reference

C h a p t e r

1
Chapter 1Objects, Methods, and Properties
This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

• Full entries for each object appear in alphabetical order; properties and
functions not associated with any object appear in Chapter 2, “Top-Level
Properties and Functions.”

Each entry provides a complete description for an object. Tables included
in the description of each object summarize the object’s methods and
properties.

• Full entries for an object’s methods and properties appear in alphabetical
order after the object’s entry.

These entries provide a complete description for each method or property,
and include cross-references to related features in the documentation.
Chapter 1, Objects, Methods, and Properties 19

Anchor
Anchor
A place in a document that is the target of a hypertext link.

Created by Using the HTML A tag or calling the String.anchor method. The JavaScript
runtime engine creates an Anchor object corresponding to each A tag in your
document that supplies the NAME attribute. It puts these objects in an array in
the document.anchors property. You access an Anchor object by indexing
this array.

To define an anchor with the String.anchor method:

theString .anchor(nameAttribute)

where:

To define an anchor with the A tag, use standard HTML syntax. If you specify
the NAME attribute, you can use the value of that attribute to index into the
anchors array.

Description If an Anchor object is also a Link object, the object has entries in both the
anchors and links arrays.

Property
Summary

Method Summary This object inherits the watch and unwatch methods from Object .

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.2: added name, text , x , and y properties

theString A String object.

nameAttribute A string.

Property Description

name A string specifying the anchor’s name.

text A string specifying the text of an anchor.

x The horizontal position of the anchor’s left edge, in pixels,
relative to the left edge of the document.

y The vertical position of the anchor’s top edge, in pixels, relative
to the top edge of the document.
20 Client-Side JavaScript Reference

Anchor
Examples Example 1: An anchor. The following example defines an anchor for the text
“Welcome to JavaScript”:

<H2>Welcome to JavaScript</H2>

If the preceding anchor is in a file called intro.html , a link in another file
could define a jump to the anchor as follows:

Introduction

Example 2: anchors array. The following example opens two windows. The
first window contains a series of buttons that set location.hash in the second
window to a specific anchor. The second window defines four anchors named
“0,” “1,” “2,” and “3.” (The anchor names in the document are therefore 0, 1, 2,
... (document.anchors.length-1).) When a button is pressed in the first window,
the onClick event handler verifies that the anchor exists before setting
window2.location.hash to the specified anchor name.

link1.html , which defines the first window and its buttons, contains the
following code:

<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 1</TITLE>
</HEAD>
<BODY>
<SCRIPT>
window2=open("link2.html","secondLinkWindow",

"scrollbars=yes,width=250, height=400")
function linkToWindow(num) {

if (window2.document.anchors.length > num)
window2.location.hash=num

else
alert("Anchor does not exist!")

}
</SCRIPT>
Chapter 1, Objects, Methods, and Properties 21

Anchor
Links and Anchors
<FORM>
<P>Click a button to display that anchor in window #2
<P><INPUT TYPE="button" VALUE="0" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="1" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="2" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="3" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="4" NAME="link0_button"

onClick="linkToWindow(this.value)">
</FORM>
</BODY>
</HTML>

link2.html , which contains the anchors, contains the following code:

<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 2</TITLE>
</HEAD>
<BODY>
Some numbers (Anchor 0)
one
two
three
four
<P>Some colors (Anchor 1)
red
orange
yellow
green
<P>Some music types (Anchor 2)
R&B
Jazz
Soul
Reggae
Rock
<P>Some countries (Anchor 3)
Afghanistan
Brazil
Canada
Finland
India
</BODY>
</HTML>

See also Link
22 Client-Side JavaScript Reference

Anchor.name
name .

A string specifying the anchor’s name.

Description The name property reflects the value of the NAME attribute.

Examples The following example displays the name of the first anchor in a document:

alert("The first anchor i s " + document.anchors[0].name)

text .

A string specifying the text of an anchor.

Description The text property specifies the string that appears within the A tag.

Examples The following example displays the text of the first anchor in a document:

alert("The text of the first anchor i s " + document.anchors[0].text)

x .

The horizontal position of the anchor’s left edge, in pixels, relative to the left
edge of the document.

See also Anchor.y

Property of Anchor

Read-only

Implemented in JavaScript 1.2

Property of Anchor

Read-only

Implemented in JavaScript 1.2

Property of Anchor

Read-only

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 23

Anchor.y
y .

The vertical position of the anchor’s top edge, in pixels, relative to the top edge
of the document.

See also Anchor.x

Property of Anchor

Read-only

Implemented in JavaScript 1.2
24 Client-Side JavaScript Reference

Applet
Applet
Includes a Java applet in a web page.

Created by The HTML APPLET tag. The JavaScript runtime engine creates an Applet object
corresponding to each applet in your document. It puts these objects in an
array in the document.applets property. You access an Applet object by
indexing this array.

To define an applet, use standard HTML syntax. If you specify the NAME
attribute, you can use the value of that attribute to index into the applets
array. To refer to an applet in JavaScript, you must supply the MAYSCRIPT
attribute in its definition.

Description The author of an HTML page must permit an applet to access JavaScript by
specifying the MAYSCRIPT attribute of the APPLET tag. This prevents an applet
from accessing JavaScript on a page without the knowledge of the page author.
For example, to allow the musicPicker.class applet access to JavaScript on
your page, specify the following:

<APPLET CODE="musicPicker.class" WIDTH=200 HEIGHT=35
NAME="musicApp" MAYSCRIPT>

Accessing JavaScript when the MAYSCRIPT attribute is not specified results in an
exception.

For more information on using applets, see the LiveConnect information in the
Client-Side JavaScript Guide.

Property
Summary

The Applet object inherits all public properties of the Java applet.

Method Summary The Applet object inherits all public methods of the Java applet.

Client-side object

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 25

Applet
Examples The following code launches an applet called musicApp :

<APPLET CODE="musicSelect.class" WIDTH=200 HEIGHT=35
NAME="musicApp" MAYSCRIPT>

</APPLET>

For more examples, see the LiveConnect information in the Client-Side
JavaScript Guide.

See also MimeType , Plugin
26 Client-Side JavaScript Reference

Chapter 1, Objects, Methods, and Properties 27

Area

Area
Defines an area of an image as an image map. When the user clicks the area,
the area’s hypertext reference is loaded into its target window. Area objects are
a type of Link object.

For information on Area objects, see Link .

Client-side object

Implemented in JavaScript 1.1

Array
Array
Lets you work with arrays.

Created by The Array object constructor:

new Array(arrayLength)
new Array(element0 , element1 , ..., elementN)

An array literal:

[element0 , element1 , ..., elementN]

JavaScript 1.2 when you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

new Array(element0 , element1 , ..., elementN)

JavaScript 1.2 when you do not specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

new Array([arrayLength])
new Array([element0 [, element1 [, ..., elementN]]])

JavaScript 1.1:

new Array([arrayLength])
new Array([element0 [, element1 [, ..., elementN]]])

Parameters

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method; changed length property;
changed push and splice methods.

ECMA version ECMA-262

arrayLength The initial length of the array. You can access this value using the
length property. If the value specified is not a number, an array of
length 1 is created, with the first element having the specified value.
The maximum length allowed for an array is 4,294,967,295.

element N A list of values for the array’s elements. When this form is specified,
the array is initialized with the specified values as its elements, and
the array’s length property is set to the number of arguments.
28 Client-Side JavaScript Reference

Array
Description An array is an ordered set of values associated with a single variable name.

The following example creates an Array object with an array literal; the
coffees array contains three elements and a length of three:

coffees = ["French Roast", "Columbian", "Kona"]

Indexing an array. You index an array by its ordinal number. For example,
assume you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second
element of the array as myArray[1] .

Specifying a single parameter. When you specify a single numeric parameter
with the Array constructor, you specify the initial length of the array. The
following code creates an array of five elements:

billingMethod = new Array(5)

The behavior of the Array constructor depends on whether the single
parameter is a number.

• If the value specified is a number, the constructor converts the number to
an unsigned, 32-bit integer and generates an array with the length
property (size of the array) set to the integer. The array initially contains no
elements, even though it might have a non-zero length.

• If the value specified is not a number, an array of length 1 is created, with
the first element having the specified value.

The following code creates an array of length 25, then assigns values to the first
three elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)
Chapter 1, Objects, Methods, and Properties 29

Array
Increasing the array length indirectly. An array’s length increases if you
assign a value to an element higher than the current length of the array. The
following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Creating an array using the result of a match. The result of a match
between a regular expression and a string can create an array. This array has
properties and elements that provide information about the match. An array is
the return value of RegExp.exec , String.match , and String.replace .
To help explain these properties and elements, look at the following example
and then refer to the table below:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

input A read-only property that reflects the
original string against which the regular
expression was matched.

cdbBdbsbz

index A read-only property that is the zero-based
index of the match in the string.

1

[0] A read-only element that specifies the last
matched characters.

dbBd

[1], ...[n] Read-only elements that specify the
parenthesized substring matches, if
included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

[1]=bB
[2]=d
30 Client-Side JavaScript Reference

Array
Backward
Compatibility

JavaScript 1.2. When you specify a single parameter with the Array
constructor, the behavior depends on whether you specify
LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, a
single-element array is returned. For example, new Array(5) creates a
one-element array with the first element being 5. A constructor with a single
parameter acts in the same way as a multiple parameter constructor. You
cannot specify the length property of an Array using a constructor with
one parameter.

• If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, you specify the initial length of the array as with other JavaScript
versions.

JavaScript 1.1 and earlier. When you specify a single parameter with the
Array constructor, you specify the initial length of the array. The following
code creates an array of five elements:

billingMethod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example
myArray[0] .

Property
Summary Property Description

constructor Specifies the function that creates an object’s prototype.

index For an array created by a regular expression match, the zero-based
index of the match in the string.

input For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

length Reflects the number of elements in an array

prototype Allows the addition of properties to all objects.
Chapter 1, Objects, Methods, and Properties 31

Array
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns the new
length of the array.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toSource Returns an array literal representing the specified array; you can use
this value to create a new array. Overrides the Object.toSource
method.

toString Returns a string representing the array and its elements. Overrides the
Object.toString method.

unshift Adds one or more elements to the front of an array and returns the
new length of the array.

valueOf Returns the primitive value of the array. Overrides the
Object.valueOf method.
32 Client-Side JavaScript Reference

Array
Examples Example 1. The following example creates an array, msgArray , with a length
of 0, then assigns values to msgArray[0] and msgArray[99] , changing the
length of the array to 100.

msgArray = new Array()
msgArray[0] = "Hello"
msgArray[99] = "world"
// The following statement is true,
// because defined msgArray[99] element.
if (msgArray.length == 100)

myVar="The length is 100."

See also the examples for onError .

Example 2: Two-dimensional array. The following code creates a two-
dimensional array and assigns the results to myVar .

myVar="Multidimensional array test; "
a = new Array(4)
for (i=0 ; i < 4; i++) {

a[i] = new Array(4)
for (j=0 ; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}
for (i=0 ; i < 4; i++) {

str = "Row "+i+":"
for (j=0 ; j < 4; j++) {

str += a[i][j]
}
myVar += str +"; "

}

This example assigns the following string to myVar (line breaks are used here
for readability):

Multidimensional array test;
Row 0:[0,0][0,1][0,2][0,3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

See also Image
Chapter 1, Objects, Methods, and Properties 33

Array.concat
concat .

Joins two arrays and returns a new array.

Syntax concat(arrayName2 , arrayName3 , ..., arrayNameN)

Parameters

Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

• Object references (and not the actual object): concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• Strings and numbers (not String and Number objects): concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

alpha=new Array("a","b","c")
numeric=new Array(1,2,3)
alphaNumeric=alpha.concat(numeric) // creates array ["a","b","c",1,2,3]

The following code concatenates three arrays:

num1=[1,2,3]
num2=[4,5,6]
num3=[7,8,9]
nums=num1.concat(num2,num3) // creates array [1,2,3,4,5,6,7,8,9]

Method of Array

Implemented in JavaScript 1.2, NES 3.0

arrayName2...
arrayName N

Arrays to concatenate to this array.
34 Client-Side JavaScript Reference

Array.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

index .

For an array created by a regular expression match, the zero-based index of the
match in the string.

input .

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 35

Array.join
join .

Joins all elements of an array into a string.

Syntax join(separator)

Parameters

Description The string conversions of all array elements are joined into one string.

Examples The following example creates an array, a, with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wind","Rain","Fire")
myVar1=a.join() // assigns "Wind,Rain,Fire" to myVar1
myVar2=a.join(", ") // assigns "Wind, Rain, Fire" to myVar1
myVar3=a.join(" + ") // assigns "Wind + Rain + Fire" to myVar1

See also Array.reverse

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.
36 Client-Side JavaScript Reference

Array.length
length .

An unsigned, 32-bit integer that specifies the number of elements in an array.

Description The value of the length property is an integer with a positive sign and a value
less than 2 to the 32 power (232).

You can set the length property to truncate an array at any time. When you
extend an array by changing its length property, the number of actual
elements does not increase; for example, if you set length to 3 when it is
currently 2, the array still contains only 2 elements.

Examples In the following example, the getChoice function uses the length property to
iterate over every element in the musicType array. musicType is a select
element on the musicForm form.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}
}

}

The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
statesUS.length=50

}

Property of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: length is an unsigned, 32-bit integer with a value
less than 232.

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 37

Array.pop
pop .

Removes the last element from an array and returns that element. This method
changes the length of the array.

Syntax pop()

Parameters None.

Example The following code creates the myFish array containing four elements, then
removes its last element.

myFish = ["angel", "clown", "mandarin", "surgeon"];
popped = myFish.pop();

See also push , shift , unshift

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Method of Array

Implemented in JavaScript 1.2, NES 3.0

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
38 Client-Side JavaScript Reference

Array.push
push .

Adds one or more elements to the end of an array and returns the new length
of the array. This method changes the length of the array.

Syntax push(element1 , ..., elementN)

Parameters

Description The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Backward
Compatibility

JavaScript 1.2. The push method returns the last element added to an array.

Example The following code creates the myFish array containing two elements, then
adds two elements to it. After the code executes, pushed contains 4. (In
JavaScript 1.2, pushed contains “lion” after the code executes.)

myFish = ["angel", "clown"];
pushed = myFish.push("drum", "lion");

See also pop , shift , unshift

Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: push returns the new length of the array rather than
the last element added to the array.

element1, ...,
element N

The elements to add to the end of the array.
Chapter 1, Objects, Methods, and Properties 39

Array.reverse
reverse .

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Syntax reverse()

Parameters None

Description The reverse method transposes the elements of the calling array object.

Examples The following example creates an array myArray , containing three elements,
then reverses the array.

myArray = new Array("one", "two", "three")
myArray.reverse()

This code changes myArray so that:

• myArray[0] is “three”

• myArray[1] is “two”

• myArray[2] is “one”

See also Array.join , Array.sort

shift .

Removes the first element from an array and returns that element. This method
changes the length of the array.

Syntax shift()

Parameters None.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Array

Implemented in JavaScript 1.2, NES 3.0
40 Client-Side JavaScript Reference

Array.slice
Example The following code displays the myFish array before and after removing its first
element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before : " + myFish);
shifted = myFish.shift();
document.writeln("myFish after : " + myFish);
document.writeln("Removed this element : " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

See also pop , push , unshift

slice .

Extracts a section of an array and returns a new array.

Syntax slice(begin [, end])

Parameters

Method of Array

Implemented in JavaScript 1.2, NES 3.0

begin Zero-based index at which to begin extraction.

end Zero-based index at which to end extraction:

• slice extracts up to but not including end . slice(1,4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)

• As a negative index, end indicates an offset from the end of the
sequence. slice(2,-1) extracts the third element through the
second to last element in the sequence.

• If end is omitted, slice extracts to the end of the sequence.
Chapter 1, Objects, Methods, and Properties 41

Array.slice
Description slice does not alter the original array, but returns a new “one level deep”
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

• For object references (and not the actual object), slice copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• For strings and numbers (not String and Number objects), slice copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example In the following example, slice creates a new array, newCar , from myCar.
Both include a reference to the object myHonda. When the color of myHonda is
changed to purple , both arrays reflect the change.

<SCRIPT LANGUAGE="JavaScript1.2">

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)

//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
document.write("myCa r = " + myCar + "
")
document.write("newCa r = " + newCar + "
")
document.write("myCar[0].colo r = " + myCar[0].color + "
")
document.write("newCar[0].colo r = " + newCar[0].color + "

")

//Change the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color +
"

")

//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].colo r = " + myCar[0].color + "
")
document.write("newCar[0].colo r = " + newCar[0].color + "
")

</SCRIPT>
42 Client-Side JavaScript Reference

Array.sort
This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
"cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple

sort .

Sorts the elements of an array.

Syntax sort(compareFunction)

Parameters

Description If compareFunction is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

• If compareFunction(a, b) is less than 0, sort b to a lower index than a.

• If compareFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

• If compareFunction(a, b) is greater than 0, sort b to a higher index than
a.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.

ECMA version ECMA-262

compareFunction Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.
Chapter 1, Objects, Methods, and Properties 43

Array.sort
So, the compare function has the following form:

function compare(a, b) {
if (a is less than b by some ordering criterion)

return -1
if (a is greater than b by the ordering criterion)

return 1
// a must be equal to b
return 0

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function compareNumbers(a, b) {
retur n a - b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

The behavior of the sort method changed between JavaScript 1.1 and
JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This
method works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you
have this script:

<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
for (i = 0; i < x.length; i++) {

document.write(x[i]);
if (i < x.length-1) document.write(", ");

}
}

writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>
44 Client-Side JavaScript Reference

Array.sort
In JavaScript 1.1, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In JavaScript 1.2, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

<SCRIPT>
stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)

function compareNumbers(a, b) {
retur n a - b

}

document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")

document.write("numberArray: " + numberArray.join() +"
")
document.write("Sorted without a compare function: " + n umberArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numberArray.sort(compareNumbers)
+"<P>")

document.write("numericStringArray: " + numericStringArray.join() +"
")
document.write("Sorted without a compare function: " + n umericStringArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
numericStringArray.sort(compareNumbers) +"<P>")

document.write("mixedNumericArray: " + mixedNumericArray.join() +"
")
document.write("Sorted without a compare function: " + mixedNumericArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers) +"
")
</SCRIPT>
Chapter 1, Objects, Methods, and Properties 45

Array.splice
This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700

See also Array.join , Array.reverse

splice .

Changes the content of an array, adding new elements while removing old
elements.

Syntax splice(index , howMany, [element1][, ..., elementN])

Parameters

Description If you specify a different number of elements to insert than the number you’re
removing, the array will have a different length at the end of the call.

The splice method returns an array containing the removed elements. If only
one element is removed, an array of one element is returned

Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: returns an array containing the removed elements

index Index at which to start changing the array.

howMany An integer indicating the number of old array elements to
remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element.

element1, ...,
element N

The elements to add to the array. If you don’t specify any
elements, splice simply removes elements from the array.
46 Client-Side JavaScript Reference

Array.splice
Backward
Compatibility

JavaScript 1.2. The splice method returns the element removed, if only one
element is removed (howMany parameter is 1); otherwise, the method returns
an array containing the removed elements.

Examples The following script illustrate the use of splice :

<SCRIPT LANGUAGE="JavaScript1.2">

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish : " + myFish + "
");

removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1 : " + myFish);
document.writeln("removed is : " + removed + "
");

removed = myFish.splice(3, 1)
document.writeln("After removing 1 : " + myFish);
document.writeln("removed is : " + removed + "
");

removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1 : " + myFish);
document.writeln("removed is : " + removed + "
");

removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
document.writeln("After replacing 2 : " + myFish);
document.writeln("removed is : " + removed);

</SCRIPT>

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined

After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]
Chapter 1, Objects, Methods, and Properties 47

Array.toSource
toSource .

Returns a string representing the source code of the array.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Array object, toSource returns the following string
indicating that the source code is not available:

function Array() {
[native code]

}

• For instances of Array , toSource returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an array.

Examples To examine the source code of an array:

alpha = new Array("a", "b", "c")
alpha.toSource() //returns ["a", "b", "c"]

See also Array.toString

Method of Array

Implemented in JavaScript 1.3
48 Client-Side JavaScript Reference

Array.toString
toString .

Returns a string representing the specified array and its elements.

Syntax toString()

Parameters None.

Description The Array object overrides the toString method of Object . For Array
objects, the toString method joins the array and returns one string
containing each array element separated by commas. For example, the
following code creates an array and uses toString to convert the array to a
string.

var monthNames = new Array("Jan","Feb","Mar","Apr")
myVar=monthNames.toString() // assigns "Jan,Feb,Mar,Apr" to myVar

JavaScript calls the toString method automatically when an array is to be
represented as a text value or when an array is referred to in a string
concatenation.

Backward
Compatibility

JavaScript 1.2. In JavaScript 1.2 and earlier versions, toString returns a
string representing the source code of the array. This value is the same as the
value returned by the toSource method in JavaScript 1.3 and later versions.

See also Array.toSource

unshift .

Adds one or more elements to the beginning of an array and returns the new
length of the array.

Syntax arrayName.unshift(element1 ,..., elementN)

Parameters

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Array

Implemented in JavaScript 1.2, NES 3.0

element1,...,
element N

The elements to add to the front of the array.
Chapter 1, Objects, Methods, and Properties 49

Array.valueOf
Example The following code displays the myFish array before and after adding elements
to it.

myFish = ["angel", "clown"];
document.writeln("myFish before : " + myFish);
unshifted = myFish.unshift("drum", "lion");
document.writeln("myFish after : " + myFish);
document.writeln("New length : " + unshifted);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also pop , push , shift

valueOf .

Returns the primitive value of an array.

Syntax valueOf()

Parameters None

Description The Array object inherits the valueOf method of Object . The valueOf
method of Array returns the primitive value of an array or the primitive value
of its elements as follows:

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.valueOf

Method of Array

Implemented in JavaScript 1.1

ECMA version ECMA-262

Object type of element Data type of returned value

Boolean Boolean

Number or Date number

All others string
50 Client-Side JavaScript Reference

Boolean
Boolean
The Boolean object is an object wrapper for a boolean value.

Created by The Boolean constructor:

new Boolean(value)

Parameters

Description Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object.

Any object whose value is not undefined or null , including a Boolean
object whose value is false, evaluates to true when passed to a conditional
statement. For example, the condition in the following if statement evaluates
to true :

x = new Boolean(false);
if(x) //the condition is true

This behavior does not apply to Boolean primitives. For example, the condition
in the following if statement evaluates to false :

x = false;
if(x) //the condition is false

Do not use a Boolean object to convert a non-boolean value to a boolean
value. Instead, use Boolean as a function to perform this task:

x = Boolean(expression) //preferred
x = new Boolean(expression) //don’t use

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method

ECMA version ECMA-262

value The initial value of the Boolean object. The value is converted to a
boolean value, if necessary. If value is omitted or is 0, -0, null, false, NaN,
undefined, or the empty string (""), the object has an initial value of false.
All other values, including any object or the string "false" , create an
object with an initial value of true.
Chapter 1, Objects, Methods, and Properties 51

Boolean
If you specify any object, including a Boolean object whose value is false, as
the initial value of a Boolean object, the new Boolean object has a value of
true.

myFalse=new Boolean(false) // initial value of false
g=new Boolean(myFalse) //initial value of true
myString=new String("Hello") // string object
s=new Boolean(myString) //initial value of true

In JavaScript 1.3 and later versions, do not use a Boolean object in place of a
Boolean primitive.

Backward
Compatibility

JavaScript 1.2 and earlier versions. When a Boolean object is used as the
condition in a conditional test, JavaScript returns the value of the Boolean
object. For example, a Boolean object whose value is false is treated as the
primitive value false, and a Boolean object whose value is true is treated as
the primitive value true in conditional tests. If the Boolean object is a false
object, the conditional statement evaluates to false .

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Defines a property that is shared by all Boolean objects.

Method Description

toSource Returns an object literal representing the specified Boolean
object; you can use this value to create a new object. Overrides
the Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of a Boolean object. Overrides the
Object.valueOf method.
52 Client-Side JavaScript Reference

Boolean.constructor
Examples The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 53

Boolean.toSource
toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Boolean object, toSource returns the following string
indicating that the source code is not available:

function Boolean() {
[native code]

}

• For instances of Boolean , toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

toString .

Returns a string representing the specified Boolean object.

Syntax toString()

Parameters None.

Description The Boolean object overrides the toString method of the Object object; it
does not inherit Object.toString . For Boolean objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Boolean is to be
represented as a text value or when a Boolean is referred to in a string
concatenation.

Method of Boolean

Implemented in JavaScript 1.3

Method of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
54 Client-Side JavaScript Reference

Boolean.valueOf
For Boolean objects and values, the built-in toString method returns the
string "true" or "false" depending on the value of the boolean object. In the
following code, flag.toString returns "true" .

var flag = new Boolean(true)
var myVar=flag.toString()

See also Object.toString

valueOf .

Returns the primitive value of a Boolean object.

Syntax valueOf()

Parameters None

Description The valueOf method of Boolean returns the primitive value of a Boolean
object or literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Boolean();
myVar=x.valueOf() //assigns false to myVar

See also Object.valueOf

Method of Boolean

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 55

Button
Button
A push button on an HTML form.

Created by The HTML INPUT tag, with "button" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate Button objects
and puts these objects in the elements array of the corresponding Form
object. You access a Button object by indexing this array. You can index the
array either by number or, if supplied, by using the value of the NAME attribute.

Event handlers • onBlur

• onClick

• onFocus

• onMouseDown

• onMouseUp

Description A Button object on a form looks as follows:

A Button object is a form element and must be defined within a FORM tag.

The Button object is a custom button that you can use to perform an action
you define. The button executes the script specified by its onClick event
handler.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods.

JavaScript 1.2: added handleEvent method.
56 Client-Side JavaScript Reference

Button.blur
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples The following example creates a button named calcButton . The text
“Calculate” is displayed on the face of the button. When the button is clicked,
the function calcFunction is called.

<INPUT TYPE="button" VALUE="Calculate" NAME="calcButton"
onClick="calcFunction(this.form)">

See also Form, Reset , Submit

blur .

Removes focus from the button.

Syntax blur()

Parameters None

Property Description

form Specifies the form containing the Button object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the VALUE attribute.

Method Description

blur Removes focus from the button.

click Simulates a mouse-click on the button.

focus Gives focus to the button.

handleEvent Invokes the handler for the specified event.

Method of Button

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 57

Button.click
Examples The following example removes focus from the button element userButton:

userButton.blur()

This example assumes that the button is defined as

<INPUT TYPE="button" NAME="userButton">

See also Button.focus

click .

Simulates a mouse-click on the button, but does not trigger the button’s
onClick event handler.

Syntax click()

Parameters None.

Security Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

focus .

Navigates to the button and gives it focus.

Syntax focus()

Parameters None.

See also Button.blur

Method of Button

Implemented in JavaScript 1.0

Method of Button

Implemented in JavaScript 1.0
58 Client-Side JavaScript Reference

Button.form
form .

An object reference specifying the form containing the button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples Example 1. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

Example 2. The following example shows a form with several elements. When
the user clicks button2 , the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of for m " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

Property of Button

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 59

Button.handleEvent
The alert dialog box displays the following text:

JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2

Example 3. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myButton .

document.myForm.myButton.form

See also Form

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

name .

A string specifying the button’s name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Method of Button

Implemented in JavaScript 1.2

event The name of an event for which the object has an event handler.

Property of Button

Implemented in JavaScript 1.0
60 Client-Side JavaScript Reference

Button.name
Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Do not confuse the name property with the label displayed on a button. The
value property specifies the label for the button. The name property is not
displayed on the screen; it is used to refer programmatically to the object.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Button element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin .

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")

alert(netscapeWin.name)

See also Button.value
Chapter 1, Objects, Methods, and Properties 61

Button.type
type .

For all Button objects, the value of the type property is "button" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the button’s VALUE attribute.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description This string is displayed on the face of the button.

The value property is read-only for Macintosh and UNIX systems. On
Windows, you can change this property.

When a VALUE attribute is not specified in HTML, the value property is an
empty string.

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
objects.

Property of Button

Read-only

Implemented in JavaScript 1.1

Property of Button

Read-only on Mac and UNIX; modifiable on Windows

Implemented in JavaScript 1.0
62 Client-Side JavaScript Reference

Button.value
Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("helpButton.value is " +

document.valueTest.helpButton.value + "
")
msgWindow.document.close()

}

This example displays the following values:

Query Submit
Reset
Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

See also Button.name
Chapter 1, Objects, Methods, and Properties 63

Checkbox
Checkbox
A checkbox on an HTML form. A checkbox is a toggle switch that lets the user
set a value on or off.

Created by The HTML INPUT tag, with "checkbox" as the value of the TYPE attribute. For
a given form, the JavaScript runtime engine creates appropriate Checkbox
objects and puts these objects in the elements array of the corresponding
Form object. You access a Checkbox object by indexing this array. You can
index the array either by number or, if supplied, by using the value of the NAME
attribute.

Event handlers • onBlur

• onClick

• onFocus

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods.

JavaScript 1.2: added handleEvent method.
64 Client-Side JavaScript Reference

Checkbox
Description A Checkbox object on a form looks as follows:

A Checkbox object is a form element and must be defined within a FORM tag.

Use the checked property to specify whether the checkbox is currently
checked. Use the defaultChecked property to specify whether the checkbox
is checked when the form is loaded or reset.

Property
Summary Property Description

checked Boolean property that reflects the current state of the
checkbox.

defaultChecked Boolean property that reflects the CHECKED attribute.

form Specifies the form containing the Checkbox object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the TYPE attribute.
Chapter 1, Objects, Methods, and Properties 65

Checkbox
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example displays a group of four checkboxes that
all appear checked by default:

Specify your music preferences (check all that apply):

<INPUT TYPE="checkbox" NAME="musicpref_rnb" CHECKED> R&B

<INPUT TYPE="checkbox" NAME="musicpref_jazz" CHECKED> Jazz

<INPUT TYPE="checkbox" NAME="musicpref_blues" CHECKED> Blues

<INPUT TYPE="checkbox" NAME="musicpref_newage" CHECKED> New Age

Example 2. The following example contains a form with three text boxes and
one checkbox. The user can use the checkbox to choose whether the text fields
are converted to uppercase. Each text field has an onChange event handler that
converts the field value to uppercase if the checkbox is checked. The checkbox
has an onClick event handler that converts all fields to uppercase when the
user checks the checkbox.

<HTML>
<HEAD>
<TITLE>Checkbox object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {

if (document.form1.convertUpper.checked) {
field.value = field.value.toUpperCase()}

}
function convertAllFields() {

document.form1.lastName.value = document.form1.lastName.value.toUpperCase()
document.form1.firstName.value = document.form1.firstName.value.toUpperCase()
document.form1.cityName.value = document.form1.cityName.value.toUpperCase()

}
</SCRIPT>

Method Description

blur Removes focus from the checkbox.

click Simulates a mouse-click on the checkbox.

focus Gives focus to the checkbox.

handleEvent Invokes the handler for the specified event.
66 Client-Side JavaScript Reference

Checkbox.blur
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P><INPUT TYPE="checkBox" NAME="convertUpper"

onClick="if (this.checked) {convertAllFields()}"
> Convert fields to upper case

</FORM>
</BODY>
</HTML>

See also Form, Radio

blur .

Removes focus from the checkbox.

Syntax blur()

Parameters None

See also Checkbox.focus

checked .

A Boolean value specifying the selection state of the checkbox.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If a checkbox button is selected, the value of its checked property is true;
otherwise, it is false.

You can set the checked property at any time. The display of the checkbox
button updates immediately when you set the checked property.

Method of Checkbox

Implemented in JavaScript 1.0

Property of Checkbox

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 67

Checkbox.click
See also Checkbox.defaultChecked

click .

Simulates a mouse-click on the checkbox, but does not trigger its onClick
event handler. The method checks the checkbox and sets toggles its value.

Syntax click()

Parameters None.

Examples The following example toggles the selection status of the newAge checkbox on
the musicForm form:

document.musicForm.newAge.click()

defaultChecked .

A Boolean value indicating the default selection state of a checkbox button.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If a checkbox is selected by default, the value of the defaultChecked property
is true; otherwise, it is false. defaultChecked initially reflects whether the
CHECKED attribute is used within an INPUT tag; however, setting
defaultChecked overrides the CHECKED attribute.

You can set the defaultChecked property at any time. The display of the
checkbox does not update when you set the defaultChecked property, only
when you set the checked property.

See also Checkbox.checked

Method of Checkbox

Implemented in JavaScript 1.0

Property of Checkbox

Implemented in JavaScript 1.0
68 Client-Side JavaScript Reference

Checkbox.focus
focus .

Gives focus to the checkbox.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a the checkbox and give it focus. The
user can then toggle the state of the checkbox.

See also Checkbox.blur

form .

An object reference specifying the form containing the checkbox.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

See also Form

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Method of Checkbox

Implemented in JavaScript 1.0

Property of Checkbox

Read-only

Implemented in JavaScript 1.0

Method of Checkbox

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.
Chapter 1, Objects, Methods, and Properties 69

Checkbox.name
name .

A string specifying the checkbox’s name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Button element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Checkbox

Implemented in JavaScript 1.0
70 Client-Side JavaScript Reference

Checkbox.type
type .

For all Checkbox objects, the value of the type property is "checkbox" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the VALUE attribute of the checkbox.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

See also Checkbox.checked , Checkbox.defaultChecked

Property of Checkbox

Read-only

Implemented in JavaScript 1.1

Property of Checkbox

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 71

Date
Date
Lets you work with dates and times.

Created by The Date constructor:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num , mo_num, day_num

[, hr_num , min_num, sec_num , ms_num])

Versions prior to JavaScript 1.3:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num , mo_num, day_num[, hr_num , min_num, sec_num])

Parameters

Core object

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.1: added prototype property

JavaScript 1.3: removed platform dependencies to provide a
uniform behavior across platforms; added ms_num parameter to
Date constructor; added getFullYear , setFullYear ,
getMilliseconds , setMilliseconds , toSource , and UTC
methods (such as getUTCDate and setUTCDate).

ECMA version ECMA-262

milliseconds Integer value representing the number of milliseconds since 1
January 1970 00:00:00.

dateString String value representing a date. The string should be in a
format recognized by the Date.parse method.

yr_num, mo_num,
day_num

Integer values representing part of a date. As an integer value,
the month is represented by 0 to 11 with 0=January and
11=December.

hr_num, min_num,
sec_num, ms_num

Integer values representing part of a date.
72 Client-Side JavaScript Reference

Date
Description If you supply no arguments, the constructor creates a Date object for today’s
date and time according to local time. If you supply some arguments but not
others, the missing arguments are set to 0. If you supply any arguments, you
must supply at least the year, month, and day. You can omit the hours,
minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A
day holds 86,400,000 milliseconds. The Date object range is -100,000,000 days
to 100,000,000 days relative to 01 January, 1970 UTC.

The Date object provides uniform behavior across platforms.

The Date object supports a number of UTC (universal) methods, as well as
local time methods. UTC, also known as Greenwich Mean Time (GMT), refers
to the time as set by the World Time Standard. The local time is the time known
to the computer where JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into
account the year 2000), you should always specify the year in full; for example,
use 1998, not 98. To assist you in specifying the complete year, JavaScript
includes the methods getFullYear , setFullYear , getFullUTCYear , and
setFullUTCYear .

The following example returns the time elapsed between timeA and timeB in
milliseconds.

timeA = new Date();
// Statements here to take some action.
timeB = new Date();
timeDifference = timeB - timeA;

Backward
Compatibility

JavaScript 1.2 and earlier. The Date object behaves as follows:

• Dates prior to 1970 are not allowed.

• JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Property
Summary Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to a Date object.
Chapter 1, Objects, Methods, and Properties 73

Date
Method Summary

Method Description

getDate Returns the day of the month for the specified date
according to local time.

getDay Returns the day of the week for the specified date
according to local time.

getFullYear Returns the year of the specified date according to
local time.

getHours Returns the hour in the specified date according to
local time.

getMilliseconds Returns the milliseconds in the specified date
according to local time.

getMinutes Returns the minutes in the specified date according to
local time.

getMonth Returns the month in the specified date according to
local time.

getSeconds Returns the seconds in the specified date according to
local time.

getTime Returns the numeric value corresponding to the time
for the specified date according to local time.

getTimezoneOffset Returns the time-zone offset in minutes for the current
locale.

getUTCDate Returns the day (date) of the month in the specified
date according to universal time.

getUTCDay Returns the day of the week in the specified date
according to universal time.

getUTCFullYear Returns the year in the specified date according to
universal time.

getUTCHours Returns the hours in the specified date according to
universal time.

getUTCMilliseconds Returns the milliseconds in the specified date
according to universal time.

getUTCMinutes Returns the minutes in the specified date according to
universal time.

getUTCMonth Returns the month according in the specified date
according to universal time.
74 Client-Side JavaScript Reference

Date
getUTCSeconds Returns the seconds in the specified date according to
universal time.

getYear Returns the year in the specified date according to
local time.

parse Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

setDate Sets the day of the month for a specified date
according to local time.

setFullYear Sets the full year for a specified date according to local
time.

setHours Sets the hours for a specified date according to local
time.

setMilliseconds Sets the milliseconds for a specified date according to
local time.

setMinutes Sets the minutes for a specified date according to local
time.

setMonth Sets the month for a specified date according to local
time.

setSeconds Sets the seconds for a specified date according to local
time.

setTime Sets the value of a Date object according to local time.

setUTCDate Sets the day of the month for a specified date
according to universal time.

setUTCFullYear Sets the full year for a specified date according to
universal time.

setUTCHours Sets the hour for a specified date according to
universal time.

setUTCMilliseconds Sets the milliseconds for a specified date according to
universal time.

setUTCMinutes Sets the minutes for a specified date according to
universal time.

setUTCMonth Sets the month for a specified date according to
universal time.

Method Description
Chapter 1, Objects, Methods, and Properties 75

Date
In addition, this object inherits the watch and unwatch methods from
Object .

Examples The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)

setUTCSeconds Sets the seconds for a specified date according to
universal time.

setYear Sets the year for a specified date according to local
time.

toGMTString Converts a date to a string, using the Internet GMT
conventions.

toLocaleString Converts a date to a string, using the current locale’s
conventions.

toSource Returns an object literal representing the specified
Date object; you can use this value to create a new
object. Overrides the Object.toSource method.

toString Returns a string representing the specified Date object.
Overrides the Object.toString method.

toUTCString Converts a date to a string, using the universal time
convention.

UTC Returns the number of milliseconds in a Date object
since January 1, 1970, 00:00:00, universal time.

valueOf Returns the primitive value of a Date object. Overrides
the Object.valueOf method.

Method Description
76 Client-Side JavaScript Reference

Date.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

getDate .

Returns the day of the month for the specified date according to local time.

Syntax getDate()

Parameters None

Description The value returned by getDate is an integer between 1 and 31.

Examples The second statement below assigns the value 25 to the variable day , based on
the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also Date.getUTCDate , Date.getUTCDay , Date.setDate

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 77

Date.getDay
getDay .

Returns the day of the week for the specified date according to local time.

Syntax getDay()

Parameters None

Description The value returned by getDay is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday , based on the
value of the Date object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

See also Date.getUTCDay , Date.setDate

getFullYear .

Returns the year of the specified date according to local time.

Syntax getFullYear()

Parameters None

Description The value returned by getFullYear is an absolute number. For dates
between the years 1000 and 9999, getFullYear returns a four-digit number,
for example, 1995. Use this function to make sure a year is compliant with
years after 2000.

Use this method instead of the getYear method.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
78 Client-Side JavaScript Reference

Date.getHours
Examples The following example assigns the four-digit value of the current year to the
variable yr .

var yr;
Today = new Date();
yr = Today.getFullYear();

See also Date.getYear , Date.getUTCFullYear, Date.setFullYear

getHours .

Returns the hour for the specified date according to local time.

Syntax getHours()

Parameters None

Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also Date.getUTCHours , Date.setHours

getMilliseconds .

Returns the milliseconds in the specified date according to local time.

Syntax getMilliseconds()

Parameters None

Description The value returned by getMilliseconds is a number between 0 and 999.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 79

Date.getMinutes
Examples The following example assigns the milliseconds portion of the current time to
the variable ms.

var ms;
Today = new Date();
ms = Today.getMilliseconds();

See also Date.getUTCMilliseconds, Date.setMilliseconds

getMinutes .

Returns the minutes in the specified date according to local time.

Syntax getMinutes()

Parameters None

Description The value returned by getMinutes is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable minutes ,
based on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also Date.getUTCMinutes , Date.setMinutes

getMonth .

Returns the month in the specified date according to local time.

Syntax getMonth()

Parameters None

Description The value returned by getMonth is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
80 Client-Side JavaScript Reference

Date.getSeconds
Examples The second statement below assigns the value 11 to the variable month , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

See also Date.getUTCMonth , Date.setMonth

getSeconds .

Returns the seconds in the current time according to local time.

Syntax getSeconds()

Parameters None

Description The value returned by getSeconds is an integer between 0 and 59.

Examples The second statement below assigns the value 30 to the variable secs , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also Date.getUTCSeconds , Date.setSeconds

getTime .

Returns the numeric value corresponding to the time for the specified date
according to local time.

Syntax getTime()

Parameters None

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 81

Date.getTimezoneOffset
Description The value returned by the getTime method is the number of milliseconds since
1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Date object.

Examples The following example assigns the date value of theBigDay to sameAsBigDay :

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.getUTCHours , Date.setTime

getTimezoneOffset .

Returns the time-zone offset in minutes for the current locale.

Syntax getTimezoneOffset()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getUTCDate .

Returns the day (date) of the month in the specified date according to universal
time.

Syntax getUTCDate()

Parameters None

Description The value returned by getUTCDate is an integer between 1 and 31.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
82 Client-Side JavaScript Reference

Date.getUTCDay
Examples The following example assigns the day portion of the current date to the
variable d.

var d;
Today = new Date();
d = Today.getUTCDate();

See also Date.getDate, Date.getUTCDay, Date.setUTCDate

getUTCDay .

Returns the day of the week in the specified date according to universal time.

Syntax getUTCDay()

Parameters None

Description The value returned by getUTCDay is an integer corresponding to the day of
the week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The following example assigns the weekday portion of the current date to the
variable ms.

var weekday;
Today = new Date()
weekday = Today.getUTCDay()

See also Date.getDay, Date.getUTCDate, Date.setUTCDate

getUTCFullYear .

Returns the year in the specified date according to universal time.

Syntax getUTCFullYear()

Parameters None

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 83

Date.getUTCHours
Description The value returned by getUTCFullYear is an absolute number that is
compliant with year-2000, for example, 1995.

Examples The following example assigns the four-digit value of the current year to the
variable yr .

var yr;
Today = new Date();
yr = Today.getUTCFullYear();

See also Date.getFullYear, Date.setFullYear

getUTCHours .

Returns the hours in the specified date according to universal time.

Syntax getUTCHours()

Parameters None

Description The value returned by getUTCHours is an integer between 0 and 23.

Examples The following example assigns the hours portion of the current time to the
variable hrs .

var hrs;
Today = new Date();
hrs = Today.getUTCHours();

See also Date.getHours, Date.setUTCHours

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
84 Client-Side JavaScript Reference

Date.getUTCMilliseconds
getUTCMilliseconds .

Returns the milliseconds in the specified date according to universal time.

Syntax getUTCMilliSeconds()

Parameters None

Description The value returned by getUTCMilliseconds is an integer between 0 and
999.

Examples The following example assigns the milliseconds portion of the current time to
the variable ms.

var ms;
Today = new Date();
ms = Today.getUTCMilliseconds();

See also Date.getMilliseconds, Date.setUTCMilliseconds

getUTCMinutes .

Returns the minutes in the specified date according to universal time.

Syntax getUTCMinutes()

Parameters None

Description The value returned by getUTCMinutes is an integer between 0 and 59.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 85

Date.getUTCMonth
Examples The following example assigns the minutes portion of the current time to the
variable min .

var min;
Today = new Date();
min = Today.getUTCMinutes();

See also Date.getMinutes, Date.setUTCMinutes

getUTCMonth .

Returns the month according in the specified date according to universal time.

Syntax getUTCMonth()

Parameters None

Description The value returned by getUTCMonth is an integer between 0 and 11
corresponding to the month. 0 for January, 1 for February, 2 for March, and so
on.

Examples The following example assigns the month portion of the current date to the
variable mon.

var mon;
Today = new Date();
mon = Today.getUTCMonth();

See also Date.getMonth, Date.setUTCMonth

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
86 Client-Side JavaScript Reference

Date.getUTCSeconds
getUTCSeconds .

Returns the seconds in the specified date according to universal time.

Syntax getUTCSeconds()

Parameters None

Description The value returned by getUTCSeconds is an integer between 0 and 59.

Examples The following example assigns the seconds portion of the current time to the
variable sec .

var sec;
Today = new Date();
sec = Today.getUTCSeconds();

See also Date.getSeconds, Date.setUTCSeconds

getYear .

Returns the year in the specified date according to local time.

Syntax getYear()

Parameters None

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: deprecated; also, getYear returns the year minus
1900 regardless of the year specified

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 87

Date.getYear
Description getYear is no longer used and has been replaced by the getFullYear
method.

The getYear method returns the year minus 1900; thus:

• For years above 2000, the value returned by getYear is 100 or greater. For
example, if the year is 2026, getYear returns 126.

• For years between and including 1900 and 1999, the value returned by
getYear is between 0 and 99. For example, if the year is 1976, getYear
returns 76.

• For years less than 1900 or greater than 1999, the value returned by
getYear is less than 0. For example, if the year is 1800, getYear returns -
100.

To take into account years before and after 2000, you should use
Date.getFullYear instead of getYear so that the year is specified in full.

Backward
Compatibility

JavaScript 1.2 and earlier versions. The getYear method returns either a
2-digit or 4-digit year:

• For years between and including 1900 and 1999, the value returned by
getYear is the year minus 1900. For example, if the year is 1976, the value
returned is 76.

• For years less than 1900 or greater than 1999, the value returned by
getYear is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.

Examples Example 1. The second statement assigns the value 95 to the variable year .

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear() // returns 95

Example 2. The second statement assigns the value 100 to the variable year .

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear() // returns 100

Example 3. The second statement assigns the value -100 to the variable year .

Xmas = new Date("December 25, 1800 23:15:00")
year = Xmas.getYear() // returns -100
88 Client-Side JavaScript Reference

Date.parse
Example 4. The second statement assigns the value 95 to the variable year ,
representing the year 1995.

Xmas.setYear(95)
year = Xmas.getYear() // returns 95

See also Date.getFullYear , Date.getUTCFullYear , Date.setYear

parse .

Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.

Syntax Date.parse(dateString)

Parameters

Description The parse method takes a date string (such as "Dec 25, 1995") and returns
the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT" . It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00

GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because parse is a static method of Date , you always use it as Date.parse() ,
rather than as a method of a Date object you created.

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

dateString A string representing a date.
Chapter 1, Objects, Methods, and Properties 89

Date.prototype
Examples If IPOdate is an existing Date object, then you can set it to August 9, 1995 as
follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))

See also Date.UTC

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

setDate .

Sets the day of the month for a specified date according to local time.

Syntax setDate(dayValue)

Parameters

Examples The second statement below changes the day for theBigDay to July 24 from its
original value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also Date.getDate , Date.setUTCDate

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

dayValue An integer from 1 to 31, representing the day of the month.
90 Client-Side JavaScript Reference

Date.setFullYear
setFullYear .

Sets the full year for a specified date according to local time.

Syntax setFullYear(yearValue [, monthValue , dayValue])

Parameters

Description If you do not specify the monthValue and dayValue parameters, the values
returned from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setFullYear
attempts to update the other parameters and the date information in the Date
object accordingly. For example, if you specify 15 for monthValue , the year is
incremented by 1 (year + 1), and 3 is used for the month.

Examples theBigDay = new Date();
theBigDay.setFullYear(1997);

See also Date.getUTCFullYear,Date.setUTCFullYear , Date.setYear

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

yearValue An integer specifying the numeric value of the year, for example,
1995.

monthValue An integer between 0 and 11 representing the months January
through December.

dayValue An integer between 1 and 31 representing the day of the month. If
you specify the dayValue parameter, you must also specify the
monthValue .
Chapter 1, Objects, Methods, and Properties 91

Date.setHours
setHours .

Sets the hours for a specified date according to local time.

Syntax setHours(hoursValue [, minutesValue , secondsValue , msValue])

Versions prior to JavaScript 1.3:

setHours(hoursValue)

Parameters

Description If you do not specify the minutesValue , secondsValue , and msValue
parameters, the values returned from the getUTCMinutes , getUTCSeconds ,
and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setHours
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

Examples theBigDay.setHours(7)

See also Date.getHours , Date.setUTCHours

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added minutesValue , secondsValue , and
msValue parameters

ECMA version ECMA-262

hoursValue An integer between 0 and 23, representing the hour.

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue .

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue .
92 Client-Side JavaScript Reference

Date.setMilliseconds
setMilliseconds .

Sets the milliseconds for a specified date according to local time.

Syntax setMilliseconds(millisecondsValue)

Parameters

Description If you specify a number outside the expected range, the date information in the
Date object is updated accordingly. For example, if you specify 1005, the
number of seconds is incremented by 1, and 5 is used for the milliseconds.

Examples theBigDay = new Date();
theBigDay.setMilliseconds(100);

See also Date.getMilliseconds, Date.setUTCMilliseconds

setMinutes .

Sets the minutes for a specified date according to local time.

Syntax setMinutes(minutesValue [, secondsValue , msValue])

Versions prior to JavaScript 1.3:

setMinutes(minutesValue)

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

millisecondsValue A number between 0 and 999, representing the milliseconds.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added secondsValue and msValue parameters

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 93

Date.setMonth
Parameters

Examples theBigDay.setMinutes(45)

Description If you do not specify the secondsValue and msValue parameters, the values
returned from getSeconds and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setMinutes
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes (minutesValue)
will be incremented by 1 (minutesValue + 1), and 40 will be used for
seconds.

See also Date.getMinutes , Date.setUTCMilliseconds

setMonth .

Sets the month for a specified date according to local time.

Syntax setMonth(monthValue [, dayValue])

Versions prior to JavaScript 1.3:

setMonth(monthValue)

Parameters

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue .

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue .

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added dayValue parameter

ECMA version ECMA-262

monthValue An integer between 0 and 11 (representing the months January
through December).

dayValue An integer from 1 to 31, representing the day of the month.
94 Client-Side JavaScript Reference

Date.setSeconds
Description If you do not specify the dayValue parameter, the value returned from the
getDate method is used.

If a parameter you specify is outside of the expected range, setMonth
attempts to update the date information in the Date object accordingly. For
example, if you use 15 for monthValue , the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBigDay.setMonth(6)

See also Date.getMonth , Date.setUTCMonth

setSeconds .

Sets the seconds for a specified date according to local time.

Syntax setSeconds(secondsValue [, msValue])

Versions prior to JavaScript 1.3:

setSeconds(secondsValue)

Parameters

Description If you do not specify the msValue parameter, the value returned from the
getMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setSeconds
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes stored in the Date
object will be incremented by 1, and 40 will be used for seconds.

Examples theBigDay.setSeconds(30)

See also Date.getSeconds , Date.setUTCSeconds

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added msValue parameter

ECMA version ECMA-262

secondsValue An integer between 0 and 59.

msValue A number between 0 and 999, representing the milliseconds.
Chapter 1, Objects, Methods, and Properties 95

Date.setTime
setTime .

Sets the value of a Date object according to local time.

Syntax setTime(timevalue)

Parameters

Description Use the setTime method to help assign a date and time to another Date object.

Examples theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.getTime , Date.setUTCHours

setUTCDate .

Sets the day of the month for a specified date according to universal time.

Syntax setUTCDate(dayValue)

Parameters

Description If a parameter you specify is outside of the expected range, setUTCDate
attempts to update the date information in the Date object accordingly. For
example, if you use 40 for dayValue , and the month stored in the Date
object is June, the day will be changed to 10 and the month will be
incremented to July.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

timevalue An integer representing the number of milliseconds since 1 January
1970 00:00:00.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

dayValue An integer from 1 to 31, representing the day of the month.
96 Client-Side JavaScript Reference

Date.setUTCFullYear
Examples theBigDay = new Date();
theBigDay.setUTCDate(20);

See also Date.getUTCDate, Date.setDate

setUTCFullYear .

Sets the full year for a specified date according to universal time.

Syntax setUTCFullYear(yearValue [, monthValue , dayValue])

Parameters

Description If you do not specify the monthValue and dayValue parameters, the values
returned from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setUTCFullYear
attempts to update the other parameters and the date information in the Date
object accordingly. For example, if you specify 15 for monthValue , the year is
incremented by 1 (year + 1), and 3 is used for the month.

Examples theBigDay = new Date();
theBigDay.setUTCFullYear(1997);

See also Date.getUTCFullYear, Date.setFullYear

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

yearValue An integer specifying the numeric value of the year, for example,
1995.

monthValue An integer between 0 and 11 representing the months January
through December.

dayValue An integer between 1 and 31 representing the day of the month. If
you specify the dayValue parameter, you must also specify the
monthValue .
Chapter 1, Objects, Methods, and Properties 97

Date.setUTCHours
setUTCHours .

Sets the hour for a specified date according to universal time.

Syntax setUTCHour(hoursValue [, minutesValue , secondsValue , msValue])

Parameters

Description If you do not specify the minutesValue , secondsValue , and msValue
parameters, the values returned from the getUTCMinutes , getUTCSeconds ,
and getUTCMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setUTCHours
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

Examples theBigDay = new Date();
theBigDay.setUTCHour(8);

See also Date.getUTCHours, Date.setHours

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

hoursValue An integer between 0 and 23, representing the hour.

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue .

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue .
98 Client-Side JavaScript Reference

Date.setUTCMilliseconds
setUTCMilliseconds .

Sets the milliseconds for a specified date according to universal time.

Syntax setUTCMilliseconds(millisecondsValue)

Parameters

Description If a parameter you specify is outside of the expected range,
setUTCMilliseconds attempts to update the date information in the Date
object accordingly. For example, if you use 1100 for millisecondsValue ,
the seconds stored in the Date object will be incremented by 1, and 100 will
be used for milliseconds.

Examples theBigDay = new Date();
theBigDay.setUTCMilliseconds(500);

See also Date.getUTCMilliseconds, Date.setMilliseconds

setUTCMinutes .

Sets the minutes for a specified date according to universal time.

Syntax setUTCMinutes(minutesValue [, secondsValue , msValue])

Parameters

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

millisecondsValue A number between 0 and 999, representing the milliseconds.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue .

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue .
Chapter 1, Objects, Methods, and Properties 99

Date.setUTCMonth
Description If you do not specify the secondsValue and msValue parameters, the values
returned from getUTCSeconds and getUTCMilliseconds methods are
used.

If a parameter you specify is outside of the expected range, setUTCMinutes
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes (minutesValue)
will be incremented by 1 (minutesValue + 1), and 40 will be used for
seconds.

Examples theBigDay = new Date();
theBigDay.setUTCMinutes(43);

See also Date.getUTCMinutes, Date.setMinutes

setUTCMonth .

Sets the month for a specified date according to universal time.

Syntax setUTCMonth(monthValue [, dayValue])

Parameters

Description If you do not specify the dayValue parameter, the value returned from the
getUTCDate method is used.

If a parameter you specify is outside of the expected range, setUTCMonth
attempts to update the date information in the Date object accordingly. For
example, if you use 15 for monthValue , the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBigDay = new Date();
theBigDay.setUTCMonth(11);

See also Date.getUTCMonth, Date.setMonth

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

monthValue An integer between 0 and 11, representing the months January
through December.

dayValue An integer from 1 to 31, representing the day of the month.
100 Client-Side JavaScript Reference

Date.setUTCSeconds
setUTCSeconds .

Sets the seconds for a specified date according to universal time.

Syntax setUTCSeconds(secondsValue [, msValue])

Parameters

Description If you do not specify the msValue parameter, the value returned from the
getUTCMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setUTCSeconds
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes stored in the Date
object will be incremented by 1, and 40 will be used for seconds.

Examples theBigDay = new Date();
theBigDay.setUTCSeconds(20);

See also Date.getUTCSeconds, Date.setSeconds

setYear .

Sets the year for a specified date according to local time.

Syntax setYear(yearValue)

Parameters

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

secondsValue An integer between 0 and 59.

msValue A number between 0 and 999, representing the milliseconds.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3

ECMA version ECMA-262

yearValue An integer.
Chapter 1, Objects, Methods, and Properties 101

Date.toGMTString
Description setYear is no longer used and has been replaced by the setFullYear
method.

If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue . Otherwise, the year for
dateObjectName is set to yearValue .

To take into account years before and after 2000, you should use
setFullYear instead of setYear so that the year is specified in full.

Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.

theBigDay.setYear(96)

Example 2. The year is set to 1996.

theBigDay.setYear(1996)

Example 3. The year is set to 2000.

theBigDay.setYear(2000)

See also Date.getYear , Date.setFullYear , Date.setUTCFullYear

toGMTString .

Converts a date to a string, using the Internet GMT conventions.

Syntax toGMTString()

Parameters None

Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3

ECMA version ECMA-262
102 Client-Side JavaScript Reference

Date.toLocaleString
Description toGMTString is no longer used and has been replaced by the toUTCString
method.

The exact format of the value returned by toGMTString varies according to the
platform.

You should use Date.toUTCString instead of toGMTSTring .

Examples In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also Date.toLocaleString , Date.toUTCString

toLocaleString .

Converts a date to a string, using the current locale’s conventions.

Syntax toLocaleString()

Parameters None

Description If you pass a date using toLocaleString , be aware that different platforms
assemble the string in different ways. Methods such as getHours ,
getMinutes , and getSeconds give more portable results.

The toLocaleString method relies on the underlying operating system in
formatting dates. It converts the date to a string using the formatting convention
of the operating system where the script is running. For example, in the United
States, the month appears before the date (04/15/98), whereas in Germany the
date appears before the month (15.04.98). If the operating system is not year-
2000 compliant and does not use the full year for years before 1900 or over
2000, toLocaleString returns a string that is not year-2000 compliant.
toLocaleString behaves similarly to toString when converting a year
that the operating system does not properly format.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 103

Date.toSource
Examples In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95 17:28:35

See also Date.toGMTString , Date.toUTCString

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Date object, toSource returns the following string
indicating that the source code is not available:

function Date() {
[native code]

}

• For instances of Date , toSource returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
104 Client-Side JavaScript Reference

Date.toString
toString .

Returns a string representing the specified Date object.

Syntax toString()

Parameters None.

Description The Date object overrides the toString method of the Object object; it
does not inherit Object.toString . For Date objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a date is to be
represented as a text value or when a date is referred to in a string
concatenation.

Examples The following example assigns the toString value of a Date object to myVar :

x = new Date();
myVar=x.toString(); //assigns a value to myVar similar to:

//Mon Sep 28 14:36:22 GMT-0700 (Pacific Daylight Time) 1998

See also Object.toString

toUTCString .

Converts a date to a string, using the universal time convention.

Syntax toUTCString()

Parameters None

Description The value returned by toUTCString is a readable string formatted according
to UTC convention. The format of the return value may vary according to the
platform.

Method of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 105

Date.UTC
Examples var UTCstring;
Today = new Date();
UTCstring = Today.toUTCString();

See also Date.toLocaleString , Date.toUTCString

UTC .

Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, universal time.

Syntax Date.UTC(year , month , day [, hrs , min , sec , ms])

Parameters

Description UTC takes comma-delimited date parameters and returns the number of
milliseconds between January 1, 1970, 00:00:00, universal time and the time
you specified.

You should specify a full year for the year; for example, 1998. If a year between
0 and 99 is specified, the method converts the year to a year in the 20th century
(1900 + year); for example, if you specify 95, the year 1995 is used.

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: added ms parameter

ECMA version ECMA-262

year A year after 1900.

month An integer between 0 and 11 representing the month.

date An integer between 1 and 31 representing the day of the month.

hrs An integer between 0 and 23 representing the hours.

min An integer between 0 and 59 representing the minutes.

sec An integer between 0 and 59 representing the seconds.

ms An integer between 0 and 999 representing the milliseconds.
106 Client-Side JavaScript Reference

Date.valueOf
The UTC method differs from the Date constructor in two ways.

• Date.UTC uses universal time instead of the local time.

• Date.UTC returns a time value as a number instead of creating a Date
object.

If a parameter you specify is outside of the expected range, the UTC method
updates the other parameters to allow for your number. For example, if you
use 15 for month , the year will be incremented by 1 (year + 1), and 3 will be
used for the month.

Because UTC is a static method of Date , you always use it as Date.UTC() ,
rather than as a method of a Date object you created.

Examples The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also Date.parse

valueOf .

Returns the primitive value of a Date object.

Syntax valueOf()

Parameters None

Description The valueOf method of Date returns the primitive value of a Date object as a
number data type, the number of milliseconds since midnight 01 January, 1970
UTC.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Date(56,6,17);
myVar=x.valueOf() //assigns -424713600000 to myVar

See also Object.valueOf

Method of Date

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 107

document
document
Contains information about the current document, and provides methods for
displaying HTML output to the user.

Created by The HTML BODY tag. The JavaScript runtime engine creates a document object
for each HTML page. Each window object has a document property whose
value is a document object.

To define a document object, use standard HTML syntax for the BODY tag with
the addition of JavaScript event handlers.

Event handlers The onBlur , onFocus , onLoad , and onUnload event handlers are specified in
the BODY tag but are actually event handlers for the window object. The
following are event handlers for the document object.

• onClick

• onDblClick

• onKeyDown

• onKeyPress

• onKeyUp

• onMouseDown

• onMouseUp

Description An HTML document consists of HEAD and BODY tags. The HEAD tag includes
information on the document’s title and base (the absolute URL base to be used
for relative URL links in the document). The BODY tag encloses the body of a
document, which is defined by the current URL. The entire body of the
document (all other HTML elements for the document) goes within the BODY
tag.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added onBlur and onFocus syntax; added
applets , domain , embeds, forms , formName , images , and
plugins properties.

JavaScript 1.2: added classes , ids , layers , and tags
properties; added captureEvents , contextual ,
getSelection , handleEvent , releaseEvents , and
routeEvent methods.
108 Client-Side JavaScript Reference

document
You can load a new document by setting the window.location property.

You can clear the document pane (and remove the text, form elements, and so
on so they do not redisplay) with these statements:

document.close();
document.open();
document.write();

You can omit the document.open call if you are writing text or HTML, since
write does an implicit open of that MIME type if the document stream is
closed.

You can refer to the anchors, forms, and links of a document by using the
anchors , forms , and links arrays. These arrays contain an entry for each
anchor, form, or link in a document and are properties of the document object.

Do not use location as a property of the document object; use the
document.URL property instead. The document.location property, which is a
synonym for document.URL , is deprecated.

Property
Summary Property Description

alinkColor A string that specifies the ALINK attribute.

anchors An array containing an entry for each anchor in the document.

applets An array containing an entry for each applet in the document.

bgColor A string that specifies the BGCOLOR attribute.

classes Creates a Style object that can specify the styles of HTML tags
with a specific CLASS attribute.

cookie Specifies a cookie.

domain Specifies the domain name of the server that served a
document.

embeds An array containing an entry for each plug-in in the document.

fgColor A string that specifies the TEXT attribute.

formName A separate property for each named form in the document.

forms An array a containing an entry for each form in the document.

height The height of the document, in pixels.
Chapter 1, Objects, Methods, and Properties 109

document
Method Summary

ids Creates a Style object that can specify the style of individual
HTML tags.

images An array containing an entry for each image in the document.

lastModified A string that specifies the date the document was last modified.

layers Array containing an entry for each layer within the document.

linkColor A string that specifies the LINK attribute.

links An array containing an entry for each link in the document.

plugins An array containing an entry for each plug-in in the document.

referrer A string that specifies the URL of the calling document.

tags Creates a Style object that can specify the styles of HTML tags.

title A string that specifies the contents of the TITLE tag.

URL A string that specifies the complete URL of a document.

vlinkColor A string that specifies the VLINK attribute.

width The width of the document, in pixels.

Property Description

Method Description

captureEvents Sets the document to capture all events of the specified type.

close Closes an output stream and forces data to display.

contextual Uses contextual selection criteria to specify a Style object
that can set the style of individual HTML tags.

getSelection Returns a string containing the text of the current selection.

handleEvent Invokes the handler for the specified event.

open Opens a stream to collect the output of write or writeln
methods.

releaseEvents Sets the window or document to release captured events of
the specified type, sending the event to objects further along
the event hierarchy.

routeEvent Passes a captured event along the normal event hierarchy.
110 Client-Side JavaScript Reference

document
In addition, this object inherits the watch and unwatch methods from
Object .

Examples The following example creates two frames, each with one document. The
document in the first frame contains links to anchors in the document of the
second frame. Each document defines its colors.

doc0.html , which defines the frames, contains the following code:

<HTML>
<HEAD>
<TITLE>Document object example</TITLE>
</HEAD>
<FRAMESET COLS="30%,70%">
<FRAME SRC="doc1.html" NAME="frame1">
<FRAME SRC="doc2.html" NAME="frame2">
</FRAMESET>
</HTML>

doc1.html , which defines the content for the first frame, contains the following
code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY

BGCOLOR="antiquewhite"
TEXT="darkviolet"
LINK="fuchsia"
ALINK="forestgreen"
VLINK="navy">

<P>Some links
Numbers
Colors
Music types
Countries
</BODY>
</HTML>

write Writes one or more HTML expressions to a document in the
specified window.

writeln Writes one or more HTML expressions to a document in the
specified window and follows them with a newline character.

Method Description
Chapter 1, Objects, Methods, and Properties 111

document.alinkColor
doc2.html , which defines the content for the second frame, contains the
following code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY

BGCOLOR="oldlace" onLoad="alert('Hello, World.')"
TEXT="navy">

<P>Some numbers
one
two
three
four
<P>Some colors
red
orange
yellow
green
<P>Some music types
R&B
Jazz
Soul
Reggae
<P>Some countries
Afghanistan
Brazil
Canada
Finland
</BODY>
</HTML>

See also Frame , window

alinkColor .

A string specifying the color of an active link (after mouse-button down, but
before mouse-button up).

Description The alinkColor property is expressed as a hexadecimal RGB triplet or as a
string literal (see the Client-Side JavaScript Guide). This property is the
JavaScript reflection of the ALINK attribute of the BODY tag.

Property of document

Implemented in JavaScript 1.0
112 Client-Side JavaScript Reference

document.anchors
If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the color of active links using a string literal:

document.alinkColor="aqua"

The following example sets the color of active links to aqua using a
hexadecimal triplet:

document.alinkColor="00FFFF"

See also document.bgColor , document.fgColor , document.linkColor ,
document.vlinkColor

anchors .

An array of objects corresponding to named anchors in source order.

Description You can refer to the Anchor objects in your code by using the anchors array.
This array contains an entry for each A tag containing a NAME attribute in a
document; these entries are in source order. For example, if a document
contains three named anchors whose NAME attributes are anchor1 , anchor2 ,
and anchor3 , you can refer to the anchors either as:

document.anchors["anchor1"]
document.anchors["anchor2"]
document.anchors["anchor3"]

or as:

document.anchors[0]
document.anchors[1]
document.anchors[2]

To obtain the number of anchors in a document, use the length property:
document.anchors.length . If a document names anchors in a systematic way
using natural numbers, you can use the anchors array and its length property
to validate an anchor name before using it in operations such as setting
location.hash .

Property of document

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 113

document.applets
applets .

An array of objects corresponding to the applets in a document in source order.

Description You can refer to the applets in your code by using the applets array. This
array contains an entry for each Applet object (APPLET tag) in a document;
these entries are in source order. For example, if a document contains three
applets whose NAME attributes are app1 , app2 , and app3 , you can refer to the
anchors either as:

document.applets["app1"]
document.applets["app2"]
document.applets["app3"]

or as:

document.applets[0]
document.applets[1]
document.applets[2]

To obtain the number of applets in a document, use the length property:
document.applets.length .

bgColor .

A string specifying the color of the document background.

Description The bgColor property is expressed as a hexadecimal RGB triplet or as a string
literal (see the Client-Side JavaScript Guide). This property is the JavaScript
reflection of the BGCOLOR attribute of the BODY tag. The default value of this
property is set by the user with the preferences dialog box.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Property of document

Read-only

Implemented in JavaScript 1.1

Property of document

Implemented in JavaScript 1.0
114 Client-Side JavaScript Reference

document.captureEvents
Examples The following example sets the color of the document background to aqua
using a string literal:

document.bgColor="aqua"

The following example sets the color of the document background to aqua
using a hexadecimal triplet:

document.bgColor="00FFFF"

See also document.alinkColor , document.fgColor , document.linkColor ,
document.vlinkColor

captureEvents .

Sets the document to capture all events of the specified type.

Syntax captureEvents(eventType)

Parameters

Description When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use window.captureEvents in a
signed script and precede it with window.enableExternalCapture . For
more information and an example, see window.enableExternalCapture .

captureEvents works in tandem with releaseEvents , routeEvent , and
handleEvent . For more information on events, see the Client-Side JavaScript
Guide.

Method of document

Implemented in JavaScript 1.2

eventType The type of event to be captured. The available event types are
listed with the event object.
Chapter 1, Objects, Methods, and Properties 115

document.classes
classes .

Creates a Style object that can specify the styles of HTML tags with a specific
CLASS attribute.

Syntax document.classes. className . tagName

Parameters

Description Use the classes property to specify the style of HTML tags that have a
specific CLASS attribute. For example, you can specify that the color of the
GreenBody class of both the P or the BLOCKQUOTE tags is green. See the
Style object for a description of the style properties you can specify for
classes .

If you use the classes property within the STYLE tag (instead of within the
SCRIPT tag), you can optionally omit document from the classes syntax.
The classes property always applies to the current document object.

Examples This example sets the color of all tags using the GreenBody CLASS attribute to
green:

<STYLE TYPE="text/javascript">
classes.GreenBody.all.color="green"

</STYLE>

Notice that you can omit the document object within the STYLE tag. Within the
SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScript1.2">
document.classes.GreenBody.all.color="green"

</SCRIPT>

In this example, text appearing within either of the following tags appears
green:

<P CLASS="GreenBody">
<BLOCKQUOTE CLASS="GreenBody">

Property of document

Implemented in JavaScript 1.2

className The case-insensitive value of the CLASS attribute of the specified
HTML tag in tagName .

tagName The case-insensitive name of any HTML tag, such as H1 or
BLOCKQUOTE. If the value of tagName is all , tagName refers to all
HTML tags.
116 Client-Side JavaScript Reference

document.close
See also document.contextual , document.ids , document.tags , Style

close .

Closes an output stream and forces data sent to layout to display.

Syntax close()

Parameters None.

Description The close method closes a stream opened with the document.open method.
If the stream was opened to layout, the close method forces the content of the
stream to display. Font style tags, such as BIG and CENTER, automatically flush
a layout stream.

The close method also stops the “meteor shower” in the Netscape icon and
displays Document: Done in the status bar.

Examples The following function calls document.close to close a stream that was
opened with document.open . The document.close method forces the content
of the stream to display in the window.

function windowWriter1() {
var myString = "Hello, world!"
msgWindow.document.open()
msgWindow.document.write(myString + "<P>")
msgWindow.document.close()

}

See also document.open , document.write , document.writeln

Method of document

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 117

document.contextual
contextual .

Uses contextual selection criteria to specify a Style object that can set the
style of individual HTML tags.

Syntax contextual(context1 , ...[contextN ,] affectedStyle)

Parameters

Description The contextual method provides a fine level of control for specifying styles.
It lets you selectively apply a style to an HTML element that appears in a very
specific context. For example, you can specify that the color of text within any
EM tag that appears in an H1 is blue.

You can further narrow the selection by specifying multiple contexts. For
example, you can set the color of any LI tags with two or more UL parents by
specifying UL for the first two contexts.

Examples Example 1. This example sets the color of text within any EM tag that appears
in an H1 to blue.

<STYLE TYPE="text/javascript">
contextual(document.tags.H1, document.tags.EM).color="blue";

</STYLE>

Notice that you can omit the document object within the STYLE tag. Within the
SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScript1.2">
document.contextual(document.tags.H1, document.tags.EM).color="blue";
</SCRIPT>

In this example, text appearing within the EM tag is blue:

<H1 CLASS="Main">The following text is blue</H1>

Method of document

Implemented in JavaScript 1.2

context1,
...[contextN]

The Style objects, described by document.classes or
document.tags , that establish the context for the affected Style
object.

affectedStyle The Style object whose style properties you want to change.
118 Client-Side JavaScript Reference

document.cookie
Example 2. This example sets the color of an LI element with two or more UL
parents to red.

<STYLE TYPE="text/javascript">
contextual(tags.UL, tags.UL, tags.LI).color="red";

</STYLE>

See also document.classes , document.tags , Style

cookie .

String value representing all of the cookies associated with this document.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description A cookie is a small piece of information stored by the web browser in the
cookies.txt file. Use string methods such as substring , charAt , indexOf ,
and lastIndexOf to determine the value stored in the cookie. See Appendix C,
“Netscape Cookies” for a complete specification of the cookie syntax.

You can set the cookie property at any time.

The "expires=" component in the cookie file sets an expiration date for the
cookie, so it persists beyond the current browser session. This date string is
formatted as follows:

Wdy, DD-Mon-YY HH:MM:SS GMT

This format represents the following values:

• Wdy is a string representing the full name of the day of the week.

• DD is an integer representing the day of the month.

• Mon is a string representing the three-character abbreviation of the month.

• YY is an integer representing the last two digits of the year.

• HH, MM, and SS are 2-digit representations of hours, minutes, and seconds,
respectively.

Property of document

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 119

document.domain
For example, a valid cookie expiration date is

expires=Wednesday, 09-Nov-99 23:12:40 GMT

The cookie date format is the same as the date returned by toGMTString , with
the following exceptions:

• Dashes are added between the day, month, and year.

• The year is a 2-digit value for cookies.

Examples The following function uses the cookie property to record a reminder for users
of an application. The cookie expiration date is set to one day after the date of
the reminder.

function RecordReminder(time, expression) {
// Record a cookie of the form "@<T>=<E>" to map
// from <T> in milliseconds since the epoch,
// returned by Date.getTime(), onto an encoded expression,
// <E> (encoded to contain no white space, semicolon,
// or comma characters)
document.cookie = "@" + time + "=" + expression + ";"
// set the cookie expiration time to one day
// beyond the reminder time
document.cookie += "expires=" + cookieDate(time + 24*60*60*1000)
// cookieDate is a function that formats the date
//according to the cookie spec

}

See also Hidden

domain .

Specifies the domain name of the server that served a document.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of document

Implemented in JavaScript 1.1
120 Client-Side JavaScript Reference

document.domain
Description JavaScript 1.1. The domain property lets scripts on multiple servers share
properties when data tainting is not enabled. With tainting disabled, a script
running in one window can read properties of another window only if both
windows come from the same Web server. But large Web sites with multiple
servers might need to share properties among servers. For example, a script on
the host www.royalairways.com might need to share properties with a script
on the host search.royalairways.com .

If scripts on two different servers change their domain property so that both
scripts have the same domain name, both scripts can share properties. For
example, a script loaded from search.royalairways.com could set its
domain property to "royalairways.com" . A script from
www.royalairways.com running in another window could also set its domain
property to "royalairways.com" . Then, since both scripts have the domain
"royalairways.com" , these two scripts can share properties, even though
they did not originate from the same server.

You can change domain only in a restricted way. Initially, domain contains the
hostname of the Web server from which the document was loaded. You can set
domain only to a domain suffix of itself. For example, a script from
search.royalairways.com can’t set its domain property to
"search.royalairways" . And a script from IWantYourMoney.com cannot set
its domain to "royalairways.com" .

Once you change the domain property, you cannot change it back to its
original value. For example, if you change domain from
"search.royalairways.com" to "royalairways.com" , you cannot reset it to
"search.royalairways.com" .

Examples The following statement changes the domain property to
"braveNewWorld.com" . This statement is valid only if "braveNewWorld.com"
is a suffix of the current domain, such as "www.braveNewWorld.com" .

document.domain="braveNewWorld.com"
Chapter 1, Objects, Methods, and Properties 121

document.embeds
embeds .

An array containing an entry for each object embedded in the document.

Description You can refer to embedded objects (created with the EMBED tag) in your code
by using the embeds array. This array contains an entry for each EMBED tag in a
document in source order. For example, if a document contains three
embedded objects whose NAME attributes are e1 , e2 , and e3 , you can refer to
the objects either as:

document.embeds["e1"]
document.embeds["e2"]
document.embeds["e3"]

or as:

document.embeds[0]
document.embeds[1]
document.embeds[2]

To obtain the number of embedded objects in a document, use the length
property: document.embeds.length .

Elements in the embeds array may have public callable functions, if they refer
to a plug-in that uses LiveConnect. See the LiveConnect information in the
Client-Side JavaScript Guide.

Use the elements in the embeds array to interact with the plug-in that is
displaying the embedded object. If a plug-in is not Java-enabled, you cannot do
anything with its element in the embeds array. The fields and methods of the
elements in the embeds array vary from plug-in to plug-in; see the
documentation supplied by the plug-in manufacturer.

When you use the EMBED tag to generate output from a plug-in application, you
are not creating a Plugin object.

Examples The following code includes an audio plug-in in a document.

<EMBED SRC="train.au" HEIGHT=50 WIDTH=250>

See also Plugin

Property of document

Read-only

Implemented in JavaScript 1.1
122 Client-Side JavaScript Reference

document.fgColor
fgColor .

A string specifying the color of the document (foreground) text.

Description The fgColor property is expressed as a hexadecimal RGB triplet or as a string
literal (see the Client-Side JavaScript Guide). This property is the JavaScript
reflection of the TEXT attribute of the BODY tag. The default value of this
property is set by the user with the preferences dialog box You cannot set this
property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

You can override the value set in the fgColor property in either of the
following ways:

• Setting the COLOR attribute of the FONT tag.

• Using the fontcolor method.

formName .

The document object contains a separate property for each form in the
document. The name of this property is the value of its NAME attribute. See
Hidden for information on Form objects. You cannot add new forms to the
document by creating new properties, but you can modify the form by
modifying this object.

Property of document

Implemented in JavaScript 1.0

Property of document

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 123

document.forms
forms .

An array containing an entry for each form in the document.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description You can refer to the forms in your code by using the forms array (you can also
use the form name). This array contains an entry for each Form object (FORM
tag) in a document; these entries are in source order. For example, if a
document contains three forms whose NAME attributes are form1 , form2 , and
form3 , you can refer to the objects in the forms array either as:

document.forms[" form1 "]
document.forms[" form2 "]
document.forms[" form3 "]

or as:

document.forms[0]
document.forms[1]
document.forms[2]

Additionally, the document object has a separate property for each named
form, so you could refer to these forms also as:

document. form1
document. form2
document. form3

For example, you would refer to a Text object named quantity in the second
form as document.forms[1].quantity . You would refer to the value
property of this Text object as document.forms[1].quantity.value .

The value of each element in the forms array is <object nameAttribute> ,
where nameAttribute is the NAME attribute of the form.

To obtain the number of forms in a document, use the length property:
document.forms.length .

Property of document

Read-only

Implemented in JavaScript 1.1
124 Client-Side JavaScript Reference

document.getSelection
getSelection .

Returns a string containing the text of the current selection.

Syntax getSelection()

Description This method works only on the current document.

Security You cannot determine selected areas in another window.

Examples If you have a form with the following code and you click on the button,
JavaScript displays an alert box containing the currently selected text from the
window containing the button:

<INPUT TYPE="BUTTON" NAME="getstring"
VALUE="Show highlighted text (if any)"
onClick="alert('You have selected:\n'+document.getSelection());">

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

Method of document

Implemented in JavaScript 1.2

Method of document

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.
Chapter 1, Objects, Methods, and Properties 125

document.height
height .

The height of a document, in pixels.

See also document.width

ids .

Creates a Style object that can specify the style of individual HTML tags.

Syntax document.ids. idValue

Parameters

Description Use the ids property to specify the style of any HTML tag that has a specific
ID attribute. For example, you can specify that the color of the NewTopic ID
is green. See the Style object for a description of the style properties you can
specify for ids .

The ids property is useful when you want to provide an exception to a class
defined in the document.classes property.

If you use the ids property within the STYLE tag (instead of within the
SCRIPT tag), you can optionally omit document from the ids syntax. The
ids property always applies to the current document object.

Examples This example sets the Main CLASS attribute to 18-point bold green, but
provides an exception for tags whose ID is NewTopic :

<STYLE TYPE="text/javascript">
classes.Main.all.color="green"
classes.Main.all.fontSize="18pt"
classes.Main.all.fontWeight="bold"
ids.NewTopic.color="blue"

</STYLE>

Property of document

Implemented in JavaScript 1.2

Property of document

Implemented in JavaScript 1.2

idValue The case-insensitive value of the ID attribute of any HTML tag.
126 Client-Side JavaScript Reference

document.images
Notice that you can omit the document object within the STYLE tag. Within the
SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScript1.2">
document.classes.Main.all.color="green"
document.classes.Main.all.fontSize="18pt"
document.classes.Main.all.fontWeight="bold"
document.ids.NewTopic.color="blue"

</SCRIPT>

In this example, text appearing within the following tag is 18-point bold green:

<H1 CLASS="Main">Green head</H1>

However, text appearing within the following tag is 18-point bold blue:

<H1 CLASS="Main" ID="NewTopic">Blue head</H1>

See also document.classes , document.contextual , document.tags , Style

images .

An array containing an entry for each image in the document.

You can refer to the images in a document by using the images array. This
array contains an entry for each Image object (IMG tag) in a document; the
entries are in source order. Images created with the Image constructor are not
included in the images array. For example, if a document contains three
images whose NAME attributes are im1 , im2 , and im3 , you can refer to the
objects in the images array either as:

document.images[" im1 "]
document.images[" im2 "]
document.images[" im3 "]

or as:

document.images[0]
document.images[1]
document.images[2]

To obtain the number of images in a document, use the length property:
document.images.length .

Property of document

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 127

document.lastModified
lastModified .

A string representing the date that a document was last modified.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The lastModified property is derived from the HTTP header data sent by the
web server. Servers generally obtain this date by examining the file’s
modification date.

The last modified date is not a required portion of the header, and some servers
do not supply it. If the server does not return the last modified information,
JavaScript receives a 0, which it displays as January 1, 1970 GMT. The following
code checks the date returned by lastModified and prints out a value that
corresponds to unknown.

lastmod = document.lastModified // get string of last modified date
lastmoddate = Date.parse(lastmod)// convert modified string to date
if(lastmoddate == 0){// unknown date (or January 1, 1970 GMT)

document.writeln("Lastmodified: Unknown")
} else {
document.writeln("LastModified : " + lastmod)

}

Examples In the following example, the lastModified property is used in a SCRIPT tag
at the end of an HTML file to display the modification date of the page:

document.write("This page updated o n " + document.lastModified)

Property of document

Read-only

Implemented in JavaScript 1.0
128 Client-Side JavaScript Reference

document.layers
layers .

The layers property is an array containing an entry for each layer within the
document.

Description You can refer to the layers in your code by using the layers array. This array
contains an entry for each Layer object (LAYER or ILAYER tag) in a document;
these entries are in source order. For example, if a document contains three
layers whose NAME attributes are layer1 , layer2 , and layer3 , you can refer to
the objects in the layers array either as:

document.layers["layer1"]
document.layers["layer2"]
document.layers["layer3"]

or as:

document.layers[0]
document.layers[1]
document.layers[2]

When accessed by integer index, array elements appear in z-order from back to
front, where 0 is the bottommost layer and higher layers are indexed by
consecutive integers. The index of a layer is not the same as its zIndex
property, as the latter does not necessarily enumerate layers with consecutive
integers. Adjacent layers can have the same zIndex property values.

These are valid ways of accessing layer objects:

document.layerName
document.layers[index]
document.layers["layerName"]
// example of using layers property to access nested layers:
document.layers["parentlayer"].layers["childlayer"]

Elements of a layers array are JavaScript objects that cannot be set by
assignment, though their properties can be set. For example, the statement

document.layers[0]="music"

is invalid (and ignored) because it attempts to alter the layers array. However,
the properties of the objects in the array readable and some are writable. For
example, the statement

document.layers["suspect1"].left = 100;

Property of document

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 129

document.linkColor
is valid. This sets the layer’s horizontal position to 100. The following example
sets the background color to blue for the layer bluehouse which is nested in
the layer houses .

document.layers["houses"].layers["bluehouse"].bgColor="blue";

To obtain the number of layers in a document, use the length property:
document.layers.length .

linkColor .

A string specifying the color of the document hyperlinks.

Description The linkColor property is expressed as a hexadecimal RGB triplet or as a
string literal (see the Client-Side JavaScript Guide). This property is the
JavaScript reflection of the LINK attribute of the BODY tag. The default value of
this property is set by the user with the preferences dialog box. You cannot set
this property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the color of document links to aqua using a string
literal:

document.linkColor="aqua"

The following example sets the color of document links to aqua using a
hexadecimal triplet:

document.linkColor="00FFFF"

See also document.alinkColor , document.bgColor , document.fgColor ,
document.vlinkColor

Property of document

Implemented in JavaScript 1.0
130 Client-Side JavaScript Reference

document.links
links .

An array of objects corresponding to Area and Link objects in source order.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description You can refer to the Area and Link objects in your code by using the links
array. This array contains an entry for each Area (<AREA HREF="..."> tag)
and Link (tag) object in a document in source order. It also
contains links created with the link method. For example, if a document
contains three links, you can refer to them as:

document.links[0]
document.links[1]
document.links[2]

To obtain the number of links in a document, use the length property:
document.links.length .

open .

Opens a stream to collect the output of write or writeln methods.

Syntax open([mimeType , [replace]])

Parameters

Property of document

Read-only

Implemented in JavaScript 1.0

Method of document

Implemented in JavaScript 1.0

JavaScript 1.1: added "replace" parameter; document.open()
or document.open("text/html") clears the current document
if it has finished loading

mimeType A string specifying the type of document to which you are writing.
If you do not specify mimeType , text/html is the default.

replace The string "replace" . If you supply this parameter, mimeType
must be "text/html" . Causes the new document to reuse the
history entry that the previous document used.
Chapter 1, Objects, Methods, and Properties 131

document.open
Description Sample values for mimeType are:

• text/html specifies a document containing ASCII text with HTML
formatting.

• text/plain specifies a document containing plain ASCII text with end-of-
line characters to delimit displayed lines.

• image/gif specifies a document with encoded bytes constituting a GIF
header and pixel data.

• image/jpeg specifies a document with encoded bytes constituting a JPEG
header and pixel data.

• image/x-bitmap specifies a document with encoded bytes constituting a
bitmap header and pixel data.

• plugIn loads the specified plug-in and uses it as the destination for write
and writeln methods. For example, "x-world/vrml" loads the VR Scout
VRML plug-in from Chaco Communications, and "application/x-

director" loads the Macromedia Shockwave plug-in. Plug-in MIME types
are only valid if the user has installed the required plug-in software.

The open method opens a stream to collect the output of write or writeln
methods. If the mimeType is text or image , the stream is opened to layout;
otherwise, the stream is opened to a plug-in. If a document exists in the target
window, the open method clears it.

End the stream by using the document.close method. The close method
causes text or images that were sent to layout to display. After using
document.close , call document.open again when you want to begin another
output stream.

In JavaScript 1.1 and later, document.open or document.open("text/html")
clears the current document if it has finished loading. This is because this type
of open call writes a default <BASE HREF=> tag so you can generate relative
URLs based on the generating script’s document base.

The "replace" keyword causes the new document to reuse the history entry
that the previous document used. When you specify "replace" while opening
a document, the target window’s history length is not incremented even after
you write and close.
132 Client-Side JavaScript Reference

document.open
"replace" is typically used on a window that has a blank document or an
"about:blank" URL. After "replace" is specified, the write method typically
generates HTML for the window, replacing the history entry for the blank URL.
Take care when using generated HTML on a window with a blank URL. If you
do not specify "replace" , the generated HTML has its own history entry, and
the user can press the Back button and back up until the frame is empty.

After document.open("text/html","replace") executes,
history.current for the target window is the URL of document that executed
document.open .

Examples Example 1. The following function calls document.open to open a stream
before issuing a write method:

function windowWriter1() {
var myString = "Hello, world!"
msgWindow.document.open()
msgWindow.document.write("<P>" + myString)
msgWindow.document.close()

}

Example 2. The following function calls document.open with the "replace"
keyword to open a stream before issuing write methods. The HTML code in
the write methods is written to msgWindow, replacing the current history entry.
The history length of msgWindow is not incremented.

function windowWriter2() {
var myString = "Hello, world!"
msgWindow.document.open("text/html","replace")
msgWindow.document.write("<P>" + myString)
msgWindow.document.write("<P>history.length is " +

msgWindow.history.length)
msgWindow.document.close()

}

The following code creates the msgWindow window and calls the function:

msgWindow=window.open('','',
'toolbar=yes,scrollbars=yes,width=400,height=300')

windowWriter2()
Chapter 1, Objects, Methods, and Properties 133

document.plugins
Example 3. In the following example, the probePlugIn function determines
whether a user has the Shockwave plug-in installed:

function probePlugIn(mimeType) {
var havePlugIn = false
var tiny = window.open("", "teensy", "width=1,height=1")
if (tiny != null) {

if (tiny.document.open(mimeType) != null)
havePlugIn = true

tiny.close()
}
return havePlugIn

}

var haveShockwavePlugIn = probePlugIn("application/x-director")

See also document.close , document.write , document.writeln ,
Location.reload , Location.replace

plugins .

An array of objects corresponding to Plugin objects in source order.

You can refer to the Plugin objects in your code by using the plugins array.
This array contains an entry for each Plugin object in a document in source
order. For example, if a document contains three plugins, you can refer to them
as:

document.plugins[0]
document.plugins[1]
document.plugins[2]

Property of document

Read-only

Implemented in JavaScript 1.1
134 Client-Side JavaScript Reference

document.referrer
referrer .

Specifies the URL of the calling document when a user clicks a link.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description When a user navigates to a destination document by clicking a Link object on
a source document, the referrer property contains the URL of the source
document.

referrer is empty if the user typed a URL in the Location box, or used some
other means to get to the current URL. referrer is also empty if the server
does not provide environment variable information.

Examples In the following example, the getReferrer function is called from the
destination document. It returns the URL of the source document.

function getReferrer() {
return document.referrer

}

releaseEvents .

Sets the document to release captured events of the specified type, sending the
event to objects further along the event hierarchy.

Note If the original target of the event is a window, the window receives the event
even if it is set to release that type of event.

Syntax releaseEvents(eventType)

Parameters

Property of document

Read-only

Implemented in JavaScript 1.0

Method of document

Implemented in JavaScript 1.2

eventType Type of event to be captured.
Chapter 1, Objects, Methods, and Properties 135

document.routeEvent
Description releaseEvents works in tandem with captureEvents , routeEvent , and
handleEvent . For more information on events, see the Client-Side JavaScript
Guide.

routeEvent .

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

Description If a sub-object (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvent works in tandem with captureEvents , releaseEvents , and
handleEvent . For more information on events, see the Client-Side JavaScript
Guide.

tags .

Creates a Style object that can specify the styles of HTML tags.

Syntax document.tags. tagName

Parameters

Description Use the tags property to specify the style of HTML tags. For example, you can
specify that the color of any H1 tag is blue, and that the alignment of any H1 or
H2 tag is centered. See the Style object for a description of the properties you
can specify for HTML tags.

Method of document

Implemented in JavaScript 1.2

event Name of the event to be routed.

Property of document

Implemented in JavaScript 1.2

tagName The case-insensitive name of any HTML tag, such as H1 or
BLOCKQUOTE.
136 Client-Side JavaScript Reference

document.title
Because all HTML elements inherit from the BODY tag, you can specify a default
document style by setting the style properties of BODY.

If you use the tags property within the STYLE tag (instead of within the
SCRIPT tag), you can optionally omit document from the tags syntax. The
tags property always applies to the current document object.

Examples Example 1. This example sets the color of all H1 tags to blue:

<STYLE TYPE="text/javascript">
tags.H1.color="blue"

</STYLE>

Notice that you can omit the document object within the STYLE tag. Within
the SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScript1.2">
document.tags.H1.color="blue"

</SCRIPT>

Example 2. This example sets a universal left margin for a document:

document.tags.Body.marginLeft="20pt"

Because all HTML tags inherit from BODY, this example sets the left margin for
the entire document to 20 points.

See also document.classes , document.contextual , document.ids , Style

title .

A string representing the title of a document.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The title property is a reflection of the value specified between the TITLE
start and end tags. If a document does not have a title, the title property is
null.

Property of document

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 137

document.URL
Examples In the following example, the value of the title property is assigned to a
variable called docTitle :

var newWindow = window.open("http://home.netscape.com")
var docTitle = newWindow.document.title

URL .

A string specifying the complete URL of the document.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description URL is a string-valued property containing the full URL of the document. It
usually matches what window.location.href is set to when you load the
document, but redirection may change location.href .

Examples The following example displays the URL of the current document:

document.write("The current URL i s " + document.URL)

See also Location.href

vlinkColor .

A string specifying the color of visited links.

Description The vlinkColor property is expressed as a hexadecimal RGB triplet or as a
string literal (see the Client-Side JavaScript Guide). This property is the
JavaScript reflection of the VLINK attribute of the BODY tag. The default value of
this property is set by the user with the preferences dialog box. You cannot set
this property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Property of document

Read-only

Implemented in JavaScript 1.0

Property of document

Implemented in JavaScript 1.0
138 Client-Side JavaScript Reference

document.width
Examples The following example sets the color of visited links to aqua using a string
literal:

document.vlinkColor="aqua"

The following example sets the color of active links to aqua using a
hexadecimal triplet:

document.vlinkColor="00FFFF"

See also document.alinkColor , document.bgColor , document.fgColor ,
document.linkColor

width .

The width of a document, in pixels.

See also document.height

write .

Writes one or more HTML expressions to a document in the specified window.

Syntax document.write(expr1 [, ..., exprN])

Parameters

Description The write method displays any number of expressions in the document
window. You can specify any JavaScript expression with the write method,
including numeric, string, or logical expressions.

The write method is the same as the writeln method, except the write
method does not append a newline character to the end of the output.

Property of document

Implemented in JavaScript 1.2

Method of document

Implemented in JavaScript 1.0

expr1, ... expr N Any JavaScript expressions.
Chapter 1, Objects, Methods, and Properties 139

document.write
Use the write method within any SCRIPT tag or within an event handler.
Event handlers execute after the original document closes, so the write
method implicitly opens a new document of mimeType text/html if you do
not explicitly issue a document.open method in the event handler.

You can use the write method to generate HTML and JavaScript code.
However, the HTML parser reads the generated code as it is being written, so
you might have to escape some characters. For example, the following write
method generates a comment and writes it to window2 :

window2=window.open('','window2')
beginComment="\<!--"
endComment="--\>"
window2.document.write(beginComment)
window2.document.write(" This some text inside a comment. ")
window2.document.write(endComment)

Printing, saving, and viewing generated HTML. In Navigator 3.0 and later,
users can print and save generated HTML using the commands on the File
menu.

If you choose Page Source from the Navigator View menu or View Frame
Source from the right-click menu, the web browser displays the content of the
HTML file with the generated HTML. (This is what would be displayed using a
wysiwyg: URL.)

If you instead want to view the HTML source showing the scripts which
generate HTML (with the document.write and document.writeln
methods), do not use the Page Source or View Frame Source menu items. In
this situation, use the view-source: protocol.

For example, assume the file file://c|/test.html contains this text:

<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>

If you load this URL into the web browser, it displays the following:

Hello, there.
140 Client-Side JavaScript Reference

document.write
If you choose View Document Source, the browser displays:

<HTML>
<BODY>
Hello,

there.
</BODY>
</HTML>

If you load view-source:file://c|/test.html , the browser displays:

<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>

For information on specifying the view-source: protocol in the location
object, see the Location object.

Examples In the following example, the write method takes several arguments, including
strings, a numeric, and a variable:

var mystery = "world"
// Displays Hello world testing 123
msgWindow.document.write("Hello ", mystery, " testing ", 123)

In the following example, the write method takes two arguments. The first
argument is an assignment expression, and the second argument is a string
literal.

//Displays Hello world...
msgWindow. document.write (mystr = "Hello ", "world...")

In the following example, the write method takes a single argument that is a
conditional expression. If the value of the variable age is less than 18, the
method displays “Minor.” If the value of age is greater than or equal to 18, the
method displays “Adult.”

msgWindow.document.write(status = (age >= 18) ? "Adult" : "Minor")

See also document.close , document.open , document.writeln
Chapter 1, Objects, Methods, and Properties 141

document.writeln
writeln .

Writes one or more HTML expressions to a document in the specified window
and follows them with a newline character.

Syntax writeln(expr1 [, ... exprN])

Parameters

Description The writeln method displays any number of expressions in a document
window. You can specify any JavaScript expression, including numeric, string,
or logical expressions.

The writeln method is the same as the write method, except the writeln
method appends a newline character to the end of the output. HTML ignores
the newline character, except within certain tags such as the PRE tag.

Use the writeln method within any SCRIPT tag or within an event handler.
Event handlers execute after the original document closes, so the writeln
method will implicitly open a new document of mimeType text/html if you
do not explicitly issue a document.open method in the event handler.

In Navigator 3.0 and later, users can print and save generated HTML using the
commands on the File menu.

Examples All the examples used for the write method are also valid with the writeln
method.

See also document.close , document.open , document.write

Method of document

Implemented in JavaScript 1.0

expr1, ... expr N Any JavaScript expressions.
142 Client-Side JavaScript Reference

event
event
The event object contains properties that describe a JavaScript event, and is
passed as an argument to an event handler when the event occurs.

In the case of a mouse-down event, for example, the event object contains the
type of event (in this case MouseDown), the x and y position of the cursor at
the time of the event, a number representing the mouse button used, and a
field containing the modifier keys (Control, Alt, Meta, or Shift) that were
depressed at the time of the event. The properties used within the event object
vary from one type of event to another. This variation is provided in the
descriptions of individual event handlers.

See Chapter 3, “Event Handlers,” for complete information about event
handlers. For more information on handling events, see the Client-Side
JavaScript Guide.

Created by event objects are created by Communicator when an event occurs. You do not
create them yourself.

Security Setting any property of this object requires the UniversalBrowserWrite
privilege. In addition, getting the data property of the DragDrop event requires
the UniversalBrowserRead privilege. For information on security, see the
Client-Side JavaScript Guide.

Property
Summary

Not all of these properties are relevant to each event type. To learn which
properties are used by an event, see the “Event object properties used” section
of the individual event handler.

Client-side object

Implemented in JavaScript 1.2

Property Description

data Returns an array of strings containing the URLs of the dropped
objects. Passed with the DragDrop event.

height Represents the height of the window or frame.

layerX Number specifying either the object width when passed with the
resize event, or the cursor's horizontal position in pixels relative to
the layer in which the event occurred. Note that layerX is
synonymous with x.
Chapter 1, Objects, Methods, and Properties 143

event
Method Summary This object inherits the watch and unwatch methods from Object .

layerY Number specifying either the object height when passed with the
resize event, or the cursor's vertical position in pixels relative to
the layer in which the event occurred. Note that layerY is
synonymous with y.

modifiers String specifying the modifier keys associated with a mouse or key
event. Modifier key values are: ALT_MASK, CONTROL_MASK,
SHIFT_MASK, and META_MASK.

pageX Number specifying the cursor's horizontal position in pixels,
relative to the page.

pageY Number specifying the cursor's vertical position in pixels relative
to the page.

screenX Number specifying the cursor's horizontal position in pixels,
relative to the screen.

screenY Number specifying the cursor's vertical position in pixels, relative
to the screen.

target String representing the object to which the event was originally
sent. (All events)

type String representing the event type. (All events)

which Number specifying either the mouse button that was pressed or
the ASCII value of a pressed key. For a mouse, 1 is the left button,
2 is the middle button, and 3 is the right button.

width Represents the width of the window or frame.

x Synonym for layerX .

y Synonym for layerY .

Property Description
144 Client-Side JavaScript Reference

event.data
Examples The following example uses the event object to provide the type of event to the
alert message.

<A HREF="http://home.netscape.com" onClick='alert("Link got an event: "
+ event.type)'>Click for link event

The following example uses the event object in an explicitly called event
handler.

<SCRIPT>
function fun1(evnt) {

alert ("Document got an event : " + evnt.type);
alert ("x position i s " + evnt.layerX);
alert ("y position i s " + evnt.layerY);
if (evnt.modifiers & Event.ALT_MASK)

alert ("Alt key was down for event.");
return true;
}

document.onmousedown = fun1;
</SCRIPT>

data .

For the DragDrop event, returns an array of strings containing the URLs of the
dropped objects.

Security Setting this property requires the UniversalBrowserWrite privilege. In
addition, getting this property for the DragDrop event requires the
UniversalBrowserRead privilege. For information on security, see the Client-
Side JavaScript Guide.

height .

Represents the height of the window or frame.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.width

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 145

event.layerX
layerX .

Number specifying either the object width when passed with the resize event,
or the cursor’s horizontal position in pixels relative to the layer in which the
event occurred.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Description This property is synonymous with the event.x property.

See also event.layerY

layerY .

Number specifying either the object height when passed with the resize event,
or the cursor's vertical position in pixels relative to the layer in which the event
occurred.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Description This property is synonymous with the event.y property.

See also event.layerX

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2
146 Client-Side JavaScript Reference

event.modifiers
modifiers .

String specifying the modifier keys associated with a mouse or key event.
Modifier key values are: ALT_MASK, CONTROL_MASK, SHIFT_MASK, and
META_MASK.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.which

pageX .

Number specifying the cursor's horizontal position in pixels, relative to the
page.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.pageY

pageY .

Number specifying the cursor’s vertical position in pixels relative to the page.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.pageX

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 147

event.screenX
screenX .

Number specifying the cursor's horizontal position in pixels, relative to the
screen.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.screenY

screenY .

Number specifying the cursor's vertical position in pixels, relative to the screen.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.screenX

target .

String representing the object to which the event was originally sent.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.type

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2
148 Client-Side JavaScript Reference

event.type
type .

String representing the event type.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.target

which .

Number specifying either the mouse button that was pressed or the ASCII value
of a pressed key. For a mouse, 1 is the left button, 2 is the middle button, and 3
is the right button.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.modifiers

width .

Represents the width of the window or frame.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.height

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 149

event.x
x .

Number specifying either the object width when passed with the resize event,
or the cursor's horizontal position in pixels relative to the layer in which the
event occurred.

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Description This property is synonymous with the event.layerX property.

See also event.y

y .

Synonym for layerY .

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Description This property is synonymous with the event.layerY property.

See also event.x

Property of event

Implemented in JavaScript 1.2

Property of event

Implemented in JavaScript 1.2
150 Client-Side JavaScript Reference

FileUpload
FileUpload
A file upload element on an HTML form. A file upload element lets the user
supply a file as input.

Created by The HTML INPUT tag, with "file" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate FileUpload
objects and puts these objects in the elements array of the corresponding
Form object. You access a FileUpload object by indexing this array. You can
index the array either by number or, if supplied, by using the value of the NAME
attribute.

Event handlers • onBlur

• onChange

• onFocus

Description A FileUpload object on a form looks as follows:

A FileUpload object is a form element and must be defined within a FORM tag.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property

JavaScript 1.2: added handleEvent method.
Chapter 1, Objects, Methods, and Properties 151

FileUpload
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples The following example places a FileUpload object on a form and provides
two buttons that let the user display current values of the name and value
properties.

<FORM NAME="form1">
File to send: <INPUT TYPE="file" NAME="myUploadObject">
<P>Get properties

<INPUT TYPE="button" VALUE="name"

onClick="alert('name : ' + document.form1.myUploadObject.name)">
<INPUT TYPE="button" VALUE="value"

onClick="alert('value: ' +
document.form1.myUploadObject.value)">

</FORM>

See also Text

Property Description

form Specifies the form containing the FileUpload object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the file upload element’s field; this
corresponds to the name of the file to upload.

Method Description

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the file upload field.
152 Client-Side JavaScript Reference

FileUpload.blur
blur .

Removes focus from the object.

Syntax blur()

Parameters None

See also FileUpload.focus , FileUpload.select

focus .

Navigates to the FileUpload field and give it focus.

Syntax focus()

Parameters None

See also FileUpload.blur , FileUpload.select

form .

An object reference specifying the form containing the object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Method of FileUpload

Implemented in JavaScript 1.0

Method of FileUpload

Implemented in JavaScript 1.0

Property of FileUpload

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 153

FileUpload.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

name .

A string specifying the name of this object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. The name
property is not displayed on-screen; it is used to refer to the objects
programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a FileUpload element on the same
form have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Method of FileUpload

Implemented in JavaScript 1.2

event The name of an event for which the object has an event handler.

Property of FileUpload

Read-only

Implemented in JavaScript 1.0
154 Client-Side JavaScript Reference

FileUpload.select
Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

select .

Selects the input area of the file upload field.

Syntax select()

Parameters None

Description Use the select method to highlight the input area of a file upload field. You
can use the select method with the focus method to highlight a field and
position the cursor for a user response. This makes it easy for the user to
replace all the text in the field.

See also FileUpload.blur , FileUpload.focus

Method of FileUpload

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 155

FileUpload.type
type .

For all FileUpload objects, the value of the type property is "file" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the VALUE attribute of the object.

Security Setting a file upload widget requires the UniversalFileRead privilege. For
information on security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description Use the value property to obtain the file name that the user typed into a
FileUpload object.

Property of FileUpload

Read-only

Implemented in JavaScript 1.1

Property of FileUpload

Read-only

Implemented in JavaScript 1.0
156 Client-Side JavaScript Reference

Form
Form
Lets users input text and make choices from Form elements such as
checkboxes, radio buttons, and selection lists. You can also use a form to post
data to a server.

Created by The HTML FORM tag. The JavaScript runtime engine creates a Form object for
each FORM tag in the document. You access FORM objects through the
document.forms property and through named properties of that object.

To define a form, use standard HTML syntax with the addition of JavaScript
event handlers. If you supply a value for the NAME attribute, you can use that
value to index into the forms array. In addition, the associated document
object has a named property for each named form.

Event handlers • onReset

• onSubmit

Description Each form in a document is a distinct object. You can refer to a form’s elements
in your code by using the element’s name (from the NAME attribute) or the
Form.elements array. The elements array contains an entry for each
element (such as a Checkbox , Radio , or Text object) in a form.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same
form have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added reset method.

JavaScript 1.2: added handleEvent method.
Chapter 1, Objects, Methods, and Properties 157

Form
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1: Named form. The following example creates a form called
myForm that contains text fields for first name and last name. The form also
contains two buttons that change the names to all uppercase or all lowercase.
The function setCase shows how to refer to the form by its name.

<HTML>
<HEAD>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
function setCase (caseSpec){
if (caseSpec == "upper") {

document.myForm.firstName.value=document.myForm.firstName.value.toUpperCase()
document.myForm.lastName.value=document.myForm.lastName.value.toUpperCase()}

else {
document.myForm.firstName.value=document.myForm.firstName.value.toLowerCase()
document.myForm.lastName.value=document.myForm.lastName.value.toLowerCase()}

}
</SCRIPT>

Property Description

action Reflects the ACTION attribute.

elements An array reflecting all the elements in a form.

encoding Reflects the ENCTYPE attribute.

length Reflects the number of elements on a form.

method Reflects the METHOD attribute.

name Reflects the NAME attribute.

target Reflects the TARGET attribute.

Method Description

handleEvent Invokes the handler for the specified event.

reset Simulates a mouse click on a reset button for the calling form.

submit Submits a form.
158 Client-Side JavaScript Reference

Form
<BODY>
<FORM NAME="myForm">
First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20>

Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20>
<P><INPUT TYPE="button" VALUE="Names to uppercase" NAME="upperButton"

onClick="setCase('upper')">
<INPUT TYPE="button" VALUE="Names to lowercase" NAME="lowerButton"

onClick="setCase('lower')">
</FORM>
</BODY>
</HTML>

Example 2: forms array. The onLoad event handler in the following example
displays the name of the first form in an Alert dialog box.

<BODY onLoad="alert('You are looking at the ' + document.forms[0] + '
form!')">

If the form name is musicType , the alert displays the following message:

You are looking at the <object musicType> form!

Example 3: onSubmit event handler. The following example shows an
onSubmit event handler that determines whether to submit a form. The form
contains one Text object where the user enters three characters. onSubmit
calls a function, checkData , that returns true if there are 3 characters;
otherwise, it returns false. Notice that the form’s onSubmit event handler, not
the submit button’s onClick event handler, calls the checkData function. Also,
the onSubmit handler contains a return statement that returns the value
obtained with the function call; this prevents the form from being submitted if
invalid data is specified. See onSubmit for more information.

<HTML>
<HEAD>
<TITLE>Form object/onSubmit event handler example</TITLE>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {

return true}
else {

alert("Enter exactly three characters . " + document.myForm.threeChar.value +
" is not valid.")

return false}
}

Chapter 1, Objects, Methods, and Properties 159

Form
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="return checkData()">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="submit" VALUE="Done" NAME="submit1"
onClick="document.myForm.threeChar.value=document.myForm.threeChar.value.toUpperCase()">
</FORM>
</BODY>
</HTML>

Example 4: submit method. The following example is similar to the previous
one, except it submits the form using the submit method instead of a Submit
object. The form’s onSubmit event handler does not prevent the form from
being submitted. The form uses a button’s onClick event handler to call the
checkData function. If the value is valid, the checkData function submits the
form by calling the form’s submit method.

<HTML>
<HEAD>
<TITLE>Form object/submit method example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {

document.myForm.submit()}
else {

alert("Enter exactly three characters. " +
document.myForm.threeChar.value +

" is not valid.")
return false}

}
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="alert('Form is being submitted.')">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="button" VALUE="Done" NAME="button1"

onClick="checkData()">
</FORM>
</BODY>
</HTML>

See also Button , Checkbox , FileUpload , Hidden , Password , Radio , Reset ,
Select , Submit , Text , Textarea .
160 Client-Side JavaScript Reference

Form.action
action .

A string specifying a destination URL for form data that is submitted

Security Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The action property is a reflection of the ACTION attribute of the FORM tag.
Each section of a URL contains different information. See Location for a
description of the URL components.

Examples The following example sets the action property of the musicForm form to the
value of the variable urlName:

document.musicForm.action=urlName

See also Form.encoding , Form.method , Form.target

elements .

An array of objects corresponding to form elements (such as checkbox , radio ,
and Text objects) in source order.

Description You can refer to a form’s elements in your code by using the elements array.
This array contains an entry for each object (Button , Checkbox ,
FileUpload , Hidden , Password , Radio , Reset , Select , Submit , Text ,
or Textarea object) in a form in source order. Each radio button in a Radio
object appears as a separate element in the elements array. For example, if a
form called myForm has a text field and two checkboxes, you can refer to these
elements myForm.elements[0] , myForm.elements[1] , and
myForm.elements[2] .

Property of Form

Implemented in JavaScript 1.0

Property of Form

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 161

Form.encoding
Although you can also refer to a form’s elements by using the element’s name
(from the NAME attribute), the elements array provides a way to refer to Form
objects programmatically without using their names. For example, if the first
object on the userInfo form is the userName Text object, you can evaluate it
in either of the following ways:

userInfo.userName.value
userInfo.elements[0].value

The value of each element in the elements array is the full HTML statement for
the object.

To obtain the number of elements in a form, use the length property:
myForm.elements.length .

Examples See the examples for window .

encoding .

A string specifying the MIME encoding of the form.

Description The encoding property initially reflects the ENCTYPE attribute of the FORM tag;
however, setting encoding overrides the ENCTYPE attribute.

Examples The following function returns the value of the encoding property of
musicForm :

function getEncoding() {
return document.musicForm.encoding

}

See also Form.action , Form.method , Form.target

Property of Form

Implemented in JavaScript 1.0
162 Client-Side JavaScript Reference

Form.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

length .

The number of elements in the form.

Description The form.length property tells you how many elements are in the form. You
can get the same information using form.elements.length .

method .

A string specifying how form field input information is sent to the server.

Description The method property is a reflection of the METHOD attribute of the FORM tag. The
method property should evaluate to either "get" or "post" .

Method of Form

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.

Property of Form

Read-only

Implemented in JavaScript 1.0

Property of Form

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 163

Form.name
Examples The following function returns the value of the musicForm method property:

function getMethod() {
return document.musicForm.method

}

See also Form.action , Form.encoding , Form.target

name .

A string specifying the name of the form.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Form

Implemented in JavaScript 1.0
164 Client-Side JavaScript Reference

Form.reset
reset .

Simulates a mouse click on a reset button for the calling form.

Syntax reset()

Parameters None

Description The reset method restores a form element’s default values. A reset button does
not need to be defined for the form.

Examples The following example displays a Text object in which the user is to type “CA”
or “AZ”. The Text object’s onChange event handler calls a function that
executes the form’s reset method if the user provides incorrect input. When
the reset method executes, defaults are restored and the form’s onReset event
handler displays a message.

<SCRIPT>
function verifyInput(textObject) {

if (textObject.value == 'CA' || textObject.value == 'AZ') {
alert('Nice input')

}
else { document.myForm.reset() }

}
</SCRIPT>

<FORM NAME="myForm" onReset="alert('Please enter CA or AZ.')">
Enter CA or AZ:
<INPUT TYPE="text" NAME="state" SIZE="2" onChange=verifyInput(this)><P>
</FORM>

See also onReset , Reset

Method of Form

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 165

Form.submit
submit .

Submits a form.

Syntax submit()

Parameters None

Security Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

JavaScript 1.1: The submit method fails without notice if the form’s action is a
mailto: , news: , or snews: URL. Users can submit forms with such URLs by
clicking a submit button, but a confirming dialog will tell them that they are
about to give away private or sensitive information.

Description The submit method submits the specified form. It performs the same action as
a submit button.

Use the submit method to send data back to an HTTP server. The submit
method returns the data using either “get” or “post,” as specified in
Form.method .

Examples The following example submits a form called musicChoice :

document.musicChoice.submit()

If musicChoice is the first form created, you also can submit it as follows:

document.forms[0].submit()

See also the example for Form.

See also Submit , onSubmit

Method of Form

Implemented in JavaScript 1.0
166 Client-Side JavaScript Reference

Form.target
target .

A string specifying the name of the window that responses go to after a form
has been submitted.

Description The target property initially reflects the TARGET attribute of the A, AREA, and
FORM tags; however, setting target overrides these attributes.

You can set target using a string, if the string represents a window name. The
target property cannot be assigned the value of a JavaScript expression or
variable.

Examples The following example specifies that responses to the musicInfo form are
displayed in the msgWindow window:

document.musicInfo.target="msgWindow"

See also Form.action , Form.encoding , Form.method

Property of Form

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 167

Frame

168 Client-Side JavaScript Reference

Frame
A window can display multiple, independently scrollable frames on a single
screen, each with its own distinct URL. These frames are created using the
FRAME tag inside a FRAMESET tag. A series of frames makes up a page. Each
frame can point to different URLs and be targeted by other URLs, all within the
same page.

The Frame object is provided a convenience for referring to the objects that
constitute frames. However, JavaScript actually represents a frame using a
window object. Every Frame object is a window object, and has all the
methods and properties of a window object. However, a window that is a
frame differs slightly from a top-level window.

See window for complete information on frames.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added blur and focus methods; added onBlur
and onFocus event handlers

Function
Function
Specifies a string of JavaScript code to be compiled as a function.

Created by The Function constructor:

new Function ([arg1 [, arg2 [, ... argN]],] functionBody)

The function statement (see “function” on page 622 for details):

function name([param [, param [, ... param]]]) {
statements

}

Parameters

Description Function objects created with the Function constructor are evaluated each
time they are used. This is less efficient than declaring a function and calling it
within your code, because declared functions are compiled.

To return a value, the function must have a return statement that specifies the
value to return.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arity , arguments.callee properties; added
ability to nest functions

JavaScript 1.3: added apply , call , and toSource methods;
deprecated arguments.caller property

ECMA version ECMA-262

arg1, arg2,
... arg N

Names to be used by the function as formal argument names. Each
must be a string that corresponds to a valid JavaScript identifier; for
example "x" or "theValue" .

functionBody A string containing the JavaScript statements comprising the function
definition.

name The function name.

param The name of an argument to be passed to the function. A function can
have up to 255 arguments.

statements The statements comprising the body of the function.
Chapter 1, Objects, Methods, and Properties 169

Function
All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

The this keyword does not refer to the currently executing function, so you
must refer to Function objects by name, even within the function body.

Accessing a function’s arguments with the arguments array. You can
refer to a function’s arguments within the function by using the arguments
array. See arguments .

Specifying arguments with the Function constructor. The following code
creates a Function object that takes two arguments.

var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the
function body, "retur n x * y" .

The preceding code assigns a function to the variable multiply . To call the
Function object, you can specify the variable name as if it were a function, as
shown in the following examples.

var theAnswer = multiply(7,6)

var myAge = 50
if (myAge >=39) {myAge=multiply (myAge,.5)}
170 Client-Side JavaScript Reference

Function
Assigning a function to a variable with the Function constructor.

Suppose you create the variable multiply using the Function constructor, as
shown in the preceding section:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
return x*y

}

Assigning a function to a variable using the Function constructor is similar to
declaring a function with the function statement, but they have differences:

• When you assign a function to a variable using var multiply = new

Function("...") , multiply is a variable for which the current value is a
reference to the function created with new Function() .

• When you create a function using function multiply() {...} ,
multiply is not a variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested
(inner) function is private to its containing (outer) function:

• The inner function can be accessed only from statements in the outer
function.

• The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

The following example shows nested functions:

function addSquares (a,b) {
function square(x) {

return x*x
}
return square(a) + square(b)

}
a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41
Chapter 1, Objects, Methods, and Properties 171

Function
When a function contains a nested function, you can call the outer function and
specify arguments for both the outer and inner function:

function outside(x) {
function inside(y) {

return x+y
}
return inside

}
result=outside(3)(5) // returns 8

Specifying an event handler with a Function object. The following code
assigns a function to a window’s onFocus event handler (the event handler
must be spelled in all lowercase):

window.onfocus = new Function("document.bgColor='antiquewhite'")

If a function is assigned to a variable, you can assign the variable to an event
handler. The following code assigns a function to the variable setBGColor .

var setBGColor = new Function("document.bgColor='antiquewhite'")

You can use this variable to assign a function to an event handler in either of
the following ways:

document.form1.colorButton.onclick=setBGColor

<INPUT NAME="colorButton" TYPE="button"
VALUE="Change background color"
onClick="setBGColor()">

Once you have a reference to a Function object, you can use it like a
function and it will convert from an object to a function:

window.onfocus()

Event handlers do not take arguments, so you cannot declare any arguments in
a Function constructor for an event handler. For example, you cannot call the
function multiply by setting a button’s onclick property as follows:

document.form1.button1.onclick=multFun(5,10)

Backward
Compatibility

JavaScript 1.1 and earlier versions. You cannot nest a function statement in
another statement or in itself.
172 Client-Side JavaScript Reference

Function
Property
Summary

Method Summary

Property Description

arguments An array corresponding to the arguments passed to a
function.

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the currently
executing function.

arguments.length Specifies the number of arguments passed to the function.

arity Specifies the number of arguments expected by the function.

constructor Specifies the function that creates an object’s prototype.

length Specifies the number of arguments expected by the function.

prototype Allows the addition of properties to a Function object.

Method Description

apply Allows you to apply a method of another object in the
context of a different object (the calling object).

call Allows you to call (execute) a method of another object in
the context of a different object (the calling object).

toSource Returns a string representing the source code of the function.
Overrides the Object.toSource method.

toString Returns a string representing the source code of the function.
Overrides the Object.toString method.

valueOf Returns a string representing the source code of the function.
Overrides the Object.valueOf method.
Chapter 1, Objects, Methods, and Properties 173

Function
Examples Example 1. The following function returns a string containing the formatted
representation of a number padded with leading zeros.

// This function returns a string padded with leading zeros
function padZeros(num, totalLen) {

var numStr = num.toString() // Initialize return value
// as string

var numZeros = totalLen - numStr.length // Calculate no. of zeros
if (numZeros > 0) {

for (var i = 1; i <= numZeros; i++) {
numStr = "0" + numStr

}
}
return numStr

}

The following statements call the padZeros function.

result=padZeros(42,4) // returns "0042"
result=padZeros(42,2) // returns "42"
result=padZeros(5,4) // returns "0005"

Example 2. You can determine whether a function exists by comparing the
function name to null. In the following example, func1 is called if the function
noFunc does not exist; otherwise func2 is called. Notice that the window name
is needed when referring to the function name noFunc .

if (window.noFunc == null)
func1()

else func2()

Example 3. The following example creates onFocus and onBlur event
handlers for a frame. This code exists in the same file that contains the
FRAMESET tag. Note that this is the only way to create onFocus and onBlur
event handlers for a frame, because you cannot specify the event handlers in
the FRAME tag.

frames[0].onfocus = new Function("document.bgColor='antiquewhite'")
frames[0].onblur = new Function("document.bgColor='lightgrey'")
174 Client-Side JavaScript Reference

Function.apply
apply .

Allows you to apply a method of another object in the context of a different
object (the calling object).

Syntax apply(thisArg [, argArray])

Parameters

Description You can assign a different this object when calling an existing function. this
refers to the current object, the calling object. With apply , you can write a
method once and then inherit it in another object, without having to rewrite the
method for the new object.

apply is very similar to call , except for the type of arguments it supports.
You can use an arguments array instead of a named set of parameters. With
apply , you can use an array literal, for example, apply(this, [name,
value]) , or an Array object, for example, apply(this, new
Array(name, value)) .

You can also use arguments for the argArray parameter. arguments is a
local variable of a function. It can be used for all unspecified arguments of the
called object. Thus, you do not have to know the arguments of the called object
when you use the apply method. You can use arguments to pass all the
arguments to the called object. The called object is then responsible for
handling the arguments.

Method of Function

Implemented in JavaScript 1.3

thisArg Parameter for the calling object

argArray An argument array for the object
Chapter 1, Objects, Methods, and Properties 175

Function.apply
Examples You can use apply to chain constructors for an object, similar to Java. In the
following example, the constructor for the product object is defined with two
parameters, name and value . Another object, prod_dept , initializes its
unique variable (dept) and calls the constructor for product in its constructor
to initialize the other variables. In this example, the parameter arguments is
used for all arguments of the product object’s constructor.

function product(name, value){
this.name = name;
if(value > 1000)

this.value = 999;
else

this.value = value;
}

function prod_dept(name, value, dept){
this.dept = dept;
product.apply(product, arguments);

}

prod_dept.prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

// since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

See also Function.call
176 Client-Side JavaScript Reference

Function.arguments
arguments .

An array corresponding to the arguments passed to a function.

Description You can refer to a function’s arguments within the function by using the
arguments array. This array contains an entry for each argument passed to
the function. For example, if a function is passed three arguments, you can
refer to the arguments as follows:

arguments[0]
arguments[1]
arguments[2]

The arguments array can also be preceded by the function name:

myFunc.arguments[0]
myFunc.arguments[1]
myFunc.arguments[2]

The arguments array is available only within a function body. Attempting to
access the arguments array outside a function declaration results in an error.

You can use the arguments array if you call a function with more arguments
than it is formally declared to accept. This technique is useful for functions that
can be passed a variable number of arguments. You can use
arguments.length to determine the number of arguments passed to the
function, and then process each argument by using the arguments array. (To
determine the number of arguments declared when a function was defined, use
the Function.length property.)

Local variable of All function objects

Property of Function (deprecated)

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arguments.callee property

JavaScript 1.3: deprecated arguments.caller property; removed
support for argument names and local variable names as properties
of the arguments array

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 177

Function.arguments
The arguments array has the following properties:

Backward
Compatibility

JavaScript 1.1 and 1.2. The following features that were available in
JavaScript 1.1 and JavaScript 1.2 have been removed:

• Each local variable of a function is a property of the arguments array. For
example, if a function myFunc has a local variable named myLocalVar ,
you can refer to the variable as arguments.myLocalVar .

• Each formal argument of a function is a property of the arguments array.
For example, if a function myFunc has two arguments named arg1 and
arg2 , you can refer to the arguments as arguments.arg1 and
arguments.arg2 . (You can also refer to them as arguments[0] and
arguments[1] .)

Examples Example 1. This example defines a function that concatenates several strings.
The only formal argument for the function is a string that specifies the
characters that separate the items to concatenate. The function is defined as
follows:

function myConcat(separator) {
result="" // initialize list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator
}
return result

}

Property Description

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the
currently executing function. (Deprecated)

arguments.length Specifies the number of arguments passed to the function.
178 Client-Side JavaScript Reference

Function.arguments
You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

Example 2. This example defines a function that creates HTML lists. The only
formal argument for the function is a string that is "U" if the list is to be
unordered (bulleted), or "O" if the list is to be ordered (numbered). The
function is defined as follows:

function list(type) {
document.write("<" + type + "L>") // begin list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

document.write("" + arguments[i])
}
document.write("</" + type + "L>") // end list

}

You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following
call to the function

list("U", "One", "Two", "Three")

results in this output:

One
Two
Three

Chapter 1, Objects, Methods, and Properties 179

Function.arguments.callee
arguments.callee .

Specifies the function body of the currently executing function.

Description The callee property is available only within the body of a function.

The this keyword does not refer to the currently executing function. Use the
callee property to refer to a function within the function body.

Examples The following function returns the value of the function’s callee property.

function myFunc() {
return arguments.callee

}

The following value is returned:

function myFunc() { return arguments.callee; }

See also Function.arguments

arguments.caller .

Specifies the name of the function that invoked the currently executing
function.

Description caller is no longer used.

The caller property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.2

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1, NES 2.0

Deprecated in JavaScript 1.3
180 Client-Side JavaScript Reference

Function.arguments.length
The caller property is a reference to the calling function, so

• If you use it in a string context, you get the result of calling
functionName.toString . That is, the decompiled canonical source form
of the function.

• You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

Examples The following code checks the value of a function’s caller property.

function myFunc() {
if (arguments.caller == null) {

return ("The function was called from the top!")
} else return ("This function's caller wa s " + a rguments.caller)

}

See also Function.arguments

arguments.length .

Specifies the number of arguments passed to the function.

Description arguments.length provides the number of arguments actually passed to a
function. By contrast, the Function.length property indicates how many
arguments a function expects.

Example The following example demonstrates the use of Function.length and
arguments.length .

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {

return (x+y)
}
else return 0

}

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 181

Function.arity
If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also Function.arguments

arity .

Specifies the number of arguments expected by the function.

Description arity is external to the function, and indicates how many arguments a
function expects. By contrast, arguments.length provides the number of
arguments actually passed to a function.

Example The following example demonstrates the use of arity and
arguments.length .

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {

return (x+y)
}
else return 0

}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also arguments.length , Function.length

Property of Function

Implemented in JavaScript 1.2, NES 3.0
182 Client-Side JavaScript Reference

Function.call
call .

Allows you to call (execute) a method of another object in the context of a
different object (the calling object).

Syntax call(thisArg [, arg1 [, arg2 [, ...]]])

Parameters

Description You can assign a different this object when calling an existing function. this
refers to the current object, the calling object.

With call , you can write a method once and then inherit it in another object,
without having to rewrite the method for the new object.

Examples You can use call to chain constructors for an object, similar to Java. In the
following example, the constructor for the product object is defined with two
parameters, name and value . Another object, prod_dept , initializes its
unique variable (dept) and calls the constructor for product in its constructor
to initialize the other variables.

function product(name, value){
this.name = name;
if(value > 1000)

this.value = 999;
else

this.value = value;
}

function prod_dept(name, value, dept){
this.dept = dept;
product.call(this, name, value);

}

prod_dept.prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

// since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

Method of Function

Implemented in JavaScript 1.3

thisArg Parameter for the calling object

arg1, arg2, ... Arguments for the object
Chapter 1, Objects, Methods, and Properties 183

Function.constructor
See also Function.apply

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

length .

Specifies the number of arguments expected by the function.

Description length is external to a function, and indicates how many arguments the
function expects. By contrast, arguments.length is local to a function and
provides the number of arguments actually passed to the function.

Example See the example for arguments.length .

See also arguments.length

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262
184 Client-Side JavaScript Reference

Function.prototype
prototype .

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated prototype
property.

Description You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun .prototype. name = value

where

If you add a property to the prototype for an object, then all objects created
with that object’s constructor function will have that new property, even if the
objects existed before you created the new property. For example, assume you
have the following statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

fun The name of the constructor function object you want to change.

name The name of the property or method to be created.

value The value initially assigned to the new property or method.
Chapter 1, Objects, Methods, and Properties 185

Function.prototype
Example The following example creates a method, str_rep , and uses the statement
String.prototype.rep = str_rep to add the method to all String objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the String objects using the statement s1.rep = fake_rep . The
str_rep method of the remaining String objects is not altered.

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-times method for all String objects
function str_rep(n) {

var s = "", t = this.toString()
while (--n >= 0) s += t
return s

}

String.prototype.rep = str_rep

s1a=s1.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

// Create an alternate method and assign it to only one String variable
function fake_rep(n) {

return "repea t " + this + " " + n + " times."
}

s1.rep = fake_rep
s1b=s1.rep(1) // returns "repea t a 1 times."
s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "cccccc"

The function in this example also works on String objects not created with
the String constructor. The following code returns "zzz" .

"z".rep(3)
186 Client-Side JavaScript Reference

Function.toSource
toSource .

Returns a string representing the source code of the function.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Function object, toSource returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

• For custom functions, toSource returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.

See also Function.toString , Object.valueOf

toString .

Returns a string representing the source code of the function.

Syntax toString()

Parameters None.

Method of Function

Implemented in JavaScript 1.3

Method of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 187

Function.valueOf
Description The Function object overrides the toString method of the Object object;
it does not inherit Object.toString . For Function objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Function is to be
represented as a text value or when a Function is referred to in a string
concatenation.

For Function objects, the built-in toString method decompiles the function
back into the JavaScript source that defines the function. This string includes
the function keyword, the argument list, curly braces, and function body.

For example, assume you have the following code that defines the Dog object
type and creates theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed =
breed; this.color = color; this.sex = sex; }

See also Object.toString

valueOf .

Returns a string representing the source code of the function.

Syntax valueOf()

Parameters None

Method of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262
188 Client-Side JavaScript Reference

Function.valueOf
Description The valueOf method returns the following values:

• For the built-in Function object, valueOf returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

• For custom functions, toSource returns the JavaScript source that defines
the object as a string. The method is equivalent to the toString method
of the function.

This method is usually called internally by JavaScript and not explicitly in code.

See also Function.toString , Object.valueOf
Chapter 1, Objects, Methods, and Properties 189

Hidden
Hidden
A Text object that is suppressed from form display on an HTML form. A
Hidden object is used for passing name/value pairs when a form submits.

Created by The HTML INPUT tag, with "hidden" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate Hidden objects
and puts these objects in the elements array of the corresponding Hidden
object. You access a Hidden object by indexing this array. You can index the
array either by number or, if supplied, by using the value of the NAME attribute.

Description A Hidden object is a form element and must be defined within a FORM tag.

A Hidden object cannot be seen or modified by an end user, but you can
programmatically change the value of the object by changing its value
property. You can use Hidden objects for client/server communication.

Property
Summary

Method Summary This object inherits the watch and unwatch methods from Object .

Examples The following example uses a Hidden object to store the value of the last object
the user clicked. The form contains a “Display hidden value” button that the
user can click to display the value of the Hidden object in an Alert dialog box.

<HTML>
<HEAD>
<TITLE>Hidden object example</TITLE>
</HEAD>
<BODY>
Click some of these objects, then click the "Display value" button

to see the value of the last object clicked.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property

Property Description

form Specifies the form containing the Hidden object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Hidden object.
190 Client-Side JavaScript Reference

Hidden.form
<FORM NAME="myForm">
<INPUT TYPE="hidden" NAME="hiddenObject" VALUE="None">
<P>
<INPUT TYPE="button" VALUE="Click me" NAME="button1"

onClick="document.myForm.hiddenObject.value=this.value">
<P>
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"

onClick="document.myForm.hiddenObject.value=this.value"> Soul and
R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"

onClick="document.myForm.hiddenObject.value=this.value"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"

onClick="document.myForm.hiddenObject.value=this.value"> Classical
<P>
<SELECT NAME="music_type_single"

onFocus="document.myForm.hiddenObject.value=this.options[this.selectedI
ndex].text">

<OPTION SELECTED> Red <OPTION> Orange <OPTION> Yellow
</SELECT>
<P><INPUT TYPE="button" VALUE="Display hidden value" NAME="button2"

onClick="alert('Last object clicked: ' +
document.myForm.hiddenObject.value)">
</FORM>
</BODY>
</HTML>

See also document.cookie

form .

An object reference specifying the form containing this object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Property of Hidden

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 191

Hidden.name
Examples Example 1. In the following example, the form myForm contains a Hidden
object and a button. When the user clicks the button, the value of the Hidden
object is set to the form’s name. The button’s onClick event handler uses
this.form to refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="hidden" NAME="h1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Store Form Name"

onClick="this.form.h1.value=this.form.name">
</FORM>

Example 2. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myHiddenObject .

document.myForm.myHiddenObject.form

See also Hidden

name .

A string specifying the name of this object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

type .

For all Hidden objects, the value of the type property is "hidden" . This
property specifies the form element’s type.

Property of Hidden

Implemented in JavaScript 1.0

Property of Hidden

Read-only

Implemented in JavaScript 1.1
192 Client-Side JavaScript Reference

Hidden.value
Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.myForm.elements.length; i++) {
document.writeln("
type i s " + document.myForm.elements[i].type)

}

value .

A string that reflects the VALUE attribute of the object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("The submit button says " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("The reset button says " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("The hidden field says " +

document.valueTest.hiddenField.value + "
")
msgWindow.document.close()

}

This example displays the following values:

The submit button says Query Submit
The reset button says Reset
The hidden field says pipefish are cute.

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="hidden" NAME="hiddenField" VALUE="pipefish are cute.">

Property of Hidden

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 193

History
History
Contains an array of information on the URLs that the client has visited within a
window. This information is stored in a history list and is accessible through the
browser’s Go menu.

Created by History objects are predefined JavaScript objects that you access through the
history property of a window object.

Description To change a window’s current URL without generating a history entry, you can
use the Location.replace method. This replaces the current page with a
new one without generating a history entry. See Location.replace .

You can refer to the history entries by using the window.history array. This
array contains an entry for each history entry in source order. Each array entry
is a string containing a URL. For example, if the history list contains three
named entries, these entries are reflected as history[0] , history[1] , and
history[2] .

If you access the history array without specifying an array element, the
browser returns a string of HTML which displays a table of URLs, each of which
is a link.

Property
Summary

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added current, next, and previous
properties.

Property Description

current Specifies the URL of the current history entry.

length Reflects the number of entries in the history list.

next Specifies the URL of the next history entry.

previous Specifies the URL of the previous history entry.
194 Client-Side JavaScript Reference

History
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example goes to the URL the user visited three
clicks ago in the current window.

history.go(-3)

Example 2. You can use the history object with a specific window or frame.
The following example causes window2 to go back one item in its window (or
session) history:

window2.history.back()

Example 3. The following example causes the second frame in a frameset to
go back one item:

parent.frames[1].history.back()

Example 4. The following example causes the frame named frame1 in a
frameset to go back one item:

parent.frame1.history.back()

Example 5. The following example causes the frame named frame2 in
window2 to go back one item:

window2.frame2.history.back()

Example 6. The following code determines whether the first entry in the
history array contains the string "NETSCAPE". If it does, the function
myFunction is called.

if (history[0].indexOf("NETSCAPE") != -1) {
myFunction(history[0])

}

Method Description

back Loads the previous URL in the history list.

forward Loads the next URL in the history list.

go Loads a URL from the history list.
Chapter 1, Objects, Methods, and Properties 195

History.back
Example 7. The following example displays the entire history list:

document.writeln("history is " + history)

This code displays output similar to the following:

history is
Welcome to Netscape http://home.netscape.com/
Sun Microsystems http://www.sun.com/
Royal Airways http://www.supernet.net/~dugbrown/

See also Location , Location.replace

back .

Loads the previous URL in the history list.

Syntax back()

Parameters None

Description This method performs the same action as a user choosing the Back button in
the browser. The back method is the same as history.go(-1) .

Examples The following custom buttons perform the same operation as the browser’s
Back button:

<P><INPUT TYPE="button" VALUE="< Go Back"
onClick="history.back()">

<P><INPUT TYPE="button" VALUE="> Go Back"
onClick="myWindow.back()">

See also History.forward , History.go

Method of History

Implemented in JavaScript 1.0
196 Client-Side JavaScript Reference

History.current
current .

A string specifying the complete URL of the current history entry.

Security Getting the value of this property requires the UniversalBrowserRead
privilege. It has no value if you do not have this privilege. For information on
security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see the Client-Side
JavaScript Guide.

Examples The following example determines whether history.current contains the
string "netscape.com" . If it does, the function myFunction is called.

if (history.current.indexOf("netscape.com") != -1) {
myFunction(history.current)

}

See also History.next , History.previous

forward .

Loads the next URL in the history list.

Syntax forward()

Parameters None

Description This method performs the same action as a user choosing the Forward button
in the browser. The forward method is the same as history.go(1) .

Property of History

Read-only

Implemented in JavaScript 1.1

Method of History

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 197

History.go
Examples The following custom buttons perform the same operation as the browser’s
Forward button:

<P><INPUT TYPE="button" VALUE="< Forward"
onClick="history.forward()">

<P><INPUT TYPE="button" VALUE="> Forward"
onClick="myWindow.forward()">

See also History.back , History.go

go .

Loads a URL from the history list.

Syntax go(delta)
go(location)

Parameters

Description The go method navigates to the location in the history list determined by the
specified parameter.

If the delta argument is 0, the browser reloads the current page. If it is an
integer greater than 0, the go method loads the URL that is that number of
entries forward in the history list; otherwise, it loads the URL that is that number
of entries backward in the history list.

The location argument is a string. Use location to load the nearest history
entry whose URL contains location as a substring. Matching the URL to the
location parameter is case-insensitive. Each section of a URL contains
different information. See Location for a description of the URL components.

The go method creates a new entry in the history list. To load a URL without
creating an entry in the history list, use Location.replace .

Method of History

Implemented in JavaScript 1.0

delta An integer representing a relative position in the history list.

location A string representing all or part of a URL in the history list.
198 Client-Side JavaScript Reference

History.length
Examples The following button navigates to the nearest history entry that contains the
string "home.netscape.com" :

<P><INPUT TYPE="button" VALUE="Go"
onClick="history.go('home.netscape.com')">

The following button navigates to the URL that is three entries backward in the
history list:

<P><INPUT TYPE="button" VALUE="Go"
onClick="history.go(-3)">

See also History.back , History.forward , Location.reload ,
Location.replace

length .

The number of elements in the history array.

Security Getting the value of this property requires the UniversalBrowserRead
privilege. For information on security, see the Client-Side JavaScript Guide.

next .

A string specifying the complete URL of the next history entry.

Security Getting the value of this property requires the UniversalBrowserRead
privilege. It has no value if you do not have this privilege. For information on
security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. It has no value if data
tainting is disabled. For information on data tainting, see the Client-Side
JavaScript Guide.

Property of History

Read-only

Implemented in JavaScript 1.0

Property of History

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 199

History.previous
Description The next property reflects the URL that would be used if the user chose
Forward from the Go menu.

Examples The following example determines whether history.next contains the string
"NETSCAPE.COM". If it does, the function myFunction is called.

if (history.next.indexOf("NETSCAPE.COM") != -1) {
myFunction(history.next)

}

See also History.current , History.previous

previous .

A string specifying the complete URL of the previous history entry.

Security Getting the value of this property requires the UniversalBrowserRead
privilege. It has no value if you do not have this privilege. For information on
security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see the Client-Side
JavaScript Guide.

Description The previous property reflects the URL that would be used if the user chose
Back from the Go menu.

Examples The following example determines whether history.previous contains the
string "NETSCAPE.COM". If it does, the function myFunction is called.

if (history.previous.indexOf("NETSCAPE.COM") != -1) {
myFunction(history.previous)

}

See also History.current , History.next

Property of History

Read-only

Implemented in JavaScript 1.1
200 Client-Side JavaScript Reference

Image
Image
An image on an HTML form.

Created by The Image constructor or the IMG tag.

The JavaScript runtime engine creates an Image object corresponding to each
IMG tag in your document. It puts these objects in an array in the
document.images property. You access an Image object by indexing this
array.

To define an image with the IMG tag, use standard HTML syntax with the
addition of JavaScript event handlers. If specify a value for the NAME attribute,
you can use that name when indexing the images array.

To define an image with its constructor, use the following syntax:

new Image([width ,] [height])

Parameters

Event handlers • onAbort

• onError

• onKeyDown

• onKeyPress

• onKeyUp

• onLoad

Client-side object

Implemented in JavaScript 1.1

JavaScript 1.2: added handleEvent method

width The image width, in pixels.

height The image height, in pixels.
Chapter 1, Objects, Methods, and Properties 201

Image
To define an event handler for an Image object created with the Image
constructor, set the appropriate property of the object. For example, if you have
an Image object named imageName and you want to set one of its event
handlers to a function whose name is handlerFunction , use one of the
following statements:

imageName.onabort = handlerFunction
imageName.onerror = handlerFunction
imageName.onkeydown = handlerFunction
imageName.onkeypress = handlerFunction
imageName.onkeyup = handlerFunction
imageName.onload = handlerFunction

Image objects do not have onClick , onMouseOut , and onMouseOver event
handlers. However, if you define an Area object for the image or place the IMG
tag within a Link object, you can use the Area or Link object’s event handlers.
See Link .

Description The position and size of an image in a document are set when the document is
displayed in the web browser and cannot be changed using JavaScript (the
width and height properties are read-only for these objects). You can change
which image is displayed by setting the src and lowsrc properties. (See the
descriptions of Image.src and Image.lowsrc .)

You can use JavaScript to create an animation with an Image object by
repeatedly setting the src property, as shown in Example 4 below. JavaScript
animation is slower than GIF animation, because with GIF animation the entire
animation is in one file; with JavaScript animation, each frame is in a separate
file, and each file must be loaded across the network (host contacted and data
transferred).

The primary use for an Image object created with the Image constructor is to
load an image from the network (and decode it) before it is actually needed for
display. Then when you need to display the image within an existing image
cell, you can set the src property of the displayed image to the same value as
that used for the previously fetched image, as follows.

myImage = new Image()
myImage.src = "seaotter.gif"
...
document.images[0].src = myImage.src
202 Client-Side JavaScript Reference

Image
The resulting image will be obtained from cache, rather than loaded over the
network, assuming that sufficient time has elapsed to load and decode the
entire image. You can use this technique to create smooth animations, or you
could display one of several images based on form input.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1: Create an image with the IMG tag. The following code defines
an image using the IMG tag:

The following code refers to the image:

document.aircraft.src='f15e.gif'

When you refer to an image by its name, you must include the form name if the
image is on a form. The following code refers to the image if it is on a form:

document.myForm.aircraft.src='f15e.gif'

Property Description

border Reflects the BORDER attribute.

complete Boolean value indicating whether the web browser has
completed its attempt to load the image.

height Reflects the HEIGHT attribute.

hspace Reflects the HSPACE attribute.

lowsrc Reflects the LOWSRC attribute.

name Reflects the NAME attribute.

src Reflects the SRC attribute.

vspace Reflects the VSPACE attribute.

width Reflects the WIDTH attribute.

Method Description

handleEvent Invokes the handler for the specified event.
Chapter 1, Objects, Methods, and Properties 203

Image
Example 2: Create an image with the Image constructor. The following
example creates an Image object, myImage , that is 70 pixels wide and 50 pixels
high. If the source URL, seaotter.gif , does not have dimensions of 70x50
pixels, it is scaled to that size.

myImage = new Image(70, 50)
myImage.src = "seaotter.gif"

If you omit the width and height arguments from the Image constructor,
myImage is created with dimensions equal to that of the image named in the
source URL.

myImage = new Image()
myImage.src = "seaotter.gif"

Example 3: Display an image based on form input. In the following
example, the user selects which image is displayed. The user orders a shirt by
filling out a form. The image displayed depends on the shirt color and size that
the user chooses. All possible image choices are preloaded to speed response
time. When the user clicks the button to order the shirt, the allShirts
function displays the images of all the shirts.

<SCRIPT>
shirts = new Array()
shirts[0] = "R-S"
shirts[1] = "R-M"
shirts[2] = "R-L"
shirts[3] = "W-S"
shirts[4] = "W-M"
shirts[5] = "W-L"
shirts[6] = "B-S"
shirts[7] = "B-M"
shirts[8] = "B-L"

doneThis = 0
shirtImg = new Array()

// Preload shirt images
for(idx=0; idx < 9; idx++) {

shirtImg[idx] = new Image()
shirtImg[idx].src = "shirt-" + shirts[idx] + ".gif"

}

204 Client-Side JavaScript Reference

Image
function changeShirt(form)
{

shirtColor = form.color.options[form.color.selectedIndex].text
shirtSize = form.size.options[form.size.selectedIndex].text

newSrc = "shirt-" + shirtColor.charAt(0) + "-" + shirtSize.charAt(0)
+ ".gif"

document.shirt.src = newSrc
}

function allShirts()
{

document.shirt.src = shirtImg[doneThis].src
doneThis++
if(doneThis != 9)setTimeout("allShirts()", 500)
else doneThis = 0

return
}

</SCRIPT>

Netscape Polo Shirts!

<TABLE CELLSPACING=20 BORDER=0>
<TR>
<TD></TD>

<TD>
<FORM>
Color
<SELECT SIZE=3 NAME="color" onChange="changeShirt(this.form)">
<OPTION> Red
<OPTION SELECTED> White
<OPTION> Blue
</SELECT>

<P>
Size
<SELECT SIZE=3 NAME="size" onChange="changeShirt(this.form)">
<OPTION> Small
<OPTION> Medium
<OPTION SELECTED> Large
</SELECT>

<P><INPUT type="button" name="buy" value="Buy This Shirt!"
onClick="allShirts()">

</FORM>

</TD>
</TR>
</TABLE>
Chapter 1, Objects, Methods, and Properties 205

Image
Example 4: JavaScript animation. The following example uses JavaScript to
create an animation with an Image object by repeatedly changing the value the
src property. The script begins by preloading the 10 images that make up the
animation (image1.gif , image2.gif , image3.gif , and so on). When the
Image object is placed on the document with the IMG tag, image1.gif is
displayed and the onLoad event handler starts the animation by calling the
animate function. Notice that the animate function does not call itself after
changing the src property of the Image object. This is because when the src
property changes, the image’s onLoad event handler is triggered and the
animate function is called.

<SCRIPT>
delay = 100
imageNum = 1

// Preload animation images
theImages = new Array()
for(i = 1 ; i < 11; i++) {

theImages[i] = new Image()
theImages[i].src = "image " + i + ".gif"

}

function animate() {
document.animation.src = theImages[imageNum].src
imageNum++
if(imageNum > 10) {

imageNum = 1
}

}

function slower() {
delay+=10
if(delay > 4000) delay = 4000

}

function faster() {
delay-=10
if(delay < 0) delay = 0

}
</SCRIPT>

<BODY BGCOLOR="white">

<IMG NAME="animation" SRC="image1.gif" ALT="[Animation]"
onLoad="setTimeout('animate()', delay)">

<FORM>
<INPUT TYPE="button" Value="Slower" onClick="slower()">
<INPUT TYPE="button" Value="Faster" onClick="faster()">

</FORM>
</BODY>
206 Client-Side JavaScript Reference

Image.border
See also the examples for the onAbort , onError , and onLoad event
handlers.

See also Link , onClick , onMouseOut , onMouseOver

border .

A string specifying the width, in pixels, of an image border.

Description The border property reflects the BORDER attribute of the IMG tag. For images
created with the Image constructor, the value of the border property is 0.

Examples The following function displays the value of an image’s border property if the
value is not 0.

function checkBorder(theImage) {
if (theImage.border==0) {

alert('The image has no border!')
}
else alert('The image's border i s ' + theImage.border)

}

See also Image.height , Image.hspace , Image.vspace , Image.width

complete .

A boolean value that indicates whether the web browser has completed its
attempt to load an image.

Property of Image

Read-only

Implemented in JavaScript 1.1

Property of Image

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 207

Image.handleEvent
Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Clicking another
button lets the user see the current value of the complete property.

Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED

onClick="document.images[0].src='f15e.gif'">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"

onClick="document.images[0].src='f15e2.gif'">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"

onClick="document.images[0].src='ah64.gif'">AH-64 Apache

<INPUT TYPE="button" VALUE="Is the image completely loaded?"
onClick="alert('The value of the complete property is '

+ document.images[0].complete)">

See also Image.lowsrc , Image.src

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

Method of Image

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.
208 Client-Side JavaScript Reference

Image.height
height .

A string specifying the height of an image in pixels.

Description The height property reflects the HEIGHT attribute of the IMG tag. For images
created with the Image constructor, the value of the height property is the
actual, not the displayed, height of the image.

Examples The following function displays the values of an image’s height , width ,
hspace , and vspace properties.

function showImageSize(theImage) {
alert('height=' + theImage.height+

'; width=' + theImage.width +
'; hspace=' + theImage.hspace +
'; vspace=' + theImage.vspace)

}

See also Image.border , Image.hspace , Image.vspace , Image.width

hspace .

A string specifying a margin in pixels between the left and right edges of an
image and the surrounding text.

Description The hspace property reflects the HSPACE attribute of the IMG tag. For images
created with the Image constructor, the value of the hspace property is 0.

Examples See the examples for the height property.

See also Image.border , Image.height , Image.vspace , Image.width

Property of Image

Read-only

Implemented in JavaScript 1.1

Property of Image

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 209

Image.lowsrc
lowsrc .

A string specifying the URL of a low-resolution version of an image to be
displayed in a document.

Description The lowsrc property initially reflects the LOWSRC attribute of the IMG tag. The
web browser loads the smaller image specified by lowsrc and then replaces it
with the larger image specified by the src property. You can change the
lowsrc property at any time.

Examples See the examples for the src property.

See also Image.complete , Image.src

name .

A string specifying the name of an object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description Represents the value of the NAME attribute. For images created with the Image
constructor, the value of the name property is null.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Image

Implemented in JavaScript 1.1

Property of Image

Read-only

Implemented in JavaScript 1.1
210 Client-Side JavaScript Reference

Image.src
In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin .

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

src .

A string specifying the URL of an image to be displayed in a document.

Description The src property initially reflects the SRC attribute of the IMG tag. Setting the
src property begins loading the new URL into the image area (and aborts the
transfer of any image data that is already loading into the same area).
Therefore, if you plan to alter the lowsrc property, you should do so before
setting the src property.

If the URL in the src property refers to an image that is not the same size as the
image cell it is loaded into, the source image is scaled to fit.

When you change the src property of a displayed image, the new image you
specify is displayed in the area defined for the original image. For example,
suppose an Image object originally displays the file beluga.gif :

If you set myImage.src='seaotter.gif' , the image seaotter.gif is scaled
to fit in the same space originally used by beluga.gif , even if seaotter.gif
is not the same size as beluga.gif .

You can change the src property at any time.

Property of Image

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 211

Image.vspace
Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Each image also
uses the lowsrc property to display a low-resolution image.

<SCRIPT>
function displayImage(lowRes,highRes) {

document.images[0].lowsrc=lowRes
document.images[0].src=highRes

}
</SCRIPT>

<FORM NAME="imageForm">
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED

onClick="displayImage('f15el.gif','f15e.gif')">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"

onClick="displayImage('f15e2l.gif','f15e2.gif')">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"

onClick="displayImage('ah64l.gif','ah64.gif')">AH-64 Apache

</FORM>

See also Image.complete , Image.lowsrc

vspace .

A string specifying a margin in pixels between the top and bottom edges of an
image and the surrounding text.

Description The vspace property reflects the VSPACE attribute of the IMG tag. For images
created with the Image constructor, the value of the vspace property is 0.

Examples See the examples for the height property.

See also Image.border , Image.height , Image.hspace , Image.width

Property of Image

Read-only

Implemented in JavaScript 1.1
212 Client-Side JavaScript Reference

Image.width
width .

A string specifying the width of an image in pixels.

Description The width property reflects the WIDTH attribute of the IMG tag. For images
created with the Image constructor, the value of the width property is the
actual, not the displayed, width of the image.

Examples See the examples for the height property.

See also Image.border , Image.height , Image.hspace , Image.vspace

Property of Image

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 213

java

214 Client-Side JavaScript Reference

java
A top-level object used to access any Java class in the package java.* .

Created by The java object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The java object is a convenience synonym for the property Packages.java .

See also Packages , Packages.java

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaArray
JavaArray
A wrapped Java array accessed from within JavaScript code is a member of the
type JavaArray .

Created by Any Java method which returns an array. In addition, you can create a
JavaArray with an arbitrary data type using the newInstance method of
the Array class:

public static Object newInstance(Class componentType,
int length)
throws NegativeArraySizeException

Description The JavaArray object is an instance of a Java array that is created in or
passed to JavaScript. JavaArray is a wrapper for the instance; all references
to the array instance are made through the JavaArray .

You must specify a class object, such as one returned by
java.lang.Object.forName , for the componentType parameter of
newInstance when you use this method to create an array. You cannot use a
JavaClass object for the componentType parameter.

Use zero-based indexes to access the elements in a JavaArray object, just as
you do to access elements in an array in Java. For example:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();
byteArray[0] // returns 72
byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaArray is passed back to Java, the array is unwrapped and can
be used by Java code. See the Client-Side JavaScript Guide for more
information about data type conversions.

Property
Summary

Core object

Implemented in JavaScript 1.1, NES 2.0

Property Description

length The number of elements in the Java array represented by
JavaArray .
Chapter 1, Objects, Methods, and Properties 215

JavaArray.length
Method Summary

Examples Example 1. Instantiating a JavaArray in JavaScript.

In this example, the JavaArray byteArray is created by the
java.lang.String.getBytes method, which returns an array.

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

Example 2. Instantiating a JavaArray in JavaScript with the newInstance
method.

Use a class object returned by java.lang.Class.forName as the argument
for the newInstance method, as shown in the following code:

var dataType = java.lang.Class.forName("java.lang.String")
var dogs = java.lang.reflect.Array.newInstance(dataType, 5)

length .

The number of elements in the Java array represented by the JavaArray
object.

Description Unlike Array.length , JavaArray.length is a read-only property. You
cannot change the value of the JavaArray.length property because Java
arrays have a fixed number of elements.

See also Array.length

Method Description

toString Returns a string identifying the object as a
JavaArray .

Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0
216 Client-Side JavaScript Reference

JavaArray.toString
toString .

Returns a string representation of the JavaArray.

Parameters None

Description The toString method is inherited from the Object object and returns the
following value:

[object JavaArray]

Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0
Chapter 1, Objects, Methods, and Properties 217

JavaClass

218 Client-Side JavaScript Reference

JavaClass
A JavaScript reference to a Java class.

Created by A reference to the class name used with the Packages object:

Packages. JavaClass

where JavaClass is the fully-specified name of the object’s Java class. The
LiveConnect java , sun , and netscape objects provide shortcuts for
commonly used Java packages and also create JavaClass objects.

Description A JavaClass object is a reference to one of the classes in a Java package,
such as netscape.javascript.JSObject . A JavaPackage object is a
reference to a Java package, such as netscape.javascript . In JavaScript,
the JavaPackage and JavaClass hierarchy reflect the Java package and
class hierarchy.

You must create a wrapper around an instance of java.lang.Class before
you pass it as a parameter to a Java method—JavaClass objects are not
automatically converted to instances of java.lang.Class .

Property
Summary

The properties of a JavaClass object are the static fields of the Java class.

Method Summary The methods of a JavaClass object are the static methods of the Java class.

Examples In the following example, x is a JavaClass object referring to
java.awt.Font . Because BOLD is a static field in the Font class, it is also a
property of the JavaClass object.

x = java.awt.Font
myFont = x("helv",x.BOLD,10) // creates a Font object

The previous example omits the Packages keyword and uses the java
synonym because the Font class is in the java package.

See also JavaArray , JavaObject , JavaPackage , Packages

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaObject
JavaObject
The type of a wrapped Java object accessed from within JavaScript code.

Created by Any Java method which returns an object type. In addition, you can explicitly
construct a JavaObject using the object’s Java constructor with the
Packages keyword:

new Packages. JavaClass (parameterList)

where JavaClass is the fully-specified name of the object’s Java class.

Parameters

Description The JavaObject object is an instance of a Java class that is created in or
passed to JavaScript. JavaObject is a wrapper for the instance; all references
to the class instance are made through the JavaObject .

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaObject is passed back to Java, it is unwrapped and can be
used by Java code. See the Client-Side JavaScript Guide for more information
about data type conversions.

Property
Summary

Inherits public data members from the Java class of which it is an instance as
properties. It also inherits public data members from any superclass as
properties.

Method Summary Inherits public methods from the Java class of which it is an instance. The
JavaObject also inherits methods from java.lang.Object and any other
superclass.

Examples Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaObject theString , which is an
instance of the class java.lang.String :

var theString = new Packages.java.lang.String("Hello, world")

Core object

Implemented in JavaScript 1.1, NES 2.0

parameterList An optional list of parameters, specified by the constructor in
the Java class.
Chapter 1, Objects, Methods, and Properties 219

JavaObject
Because the String class is in the java package, you can also use the java
synonym and omit the Packages keyword when you instantiate the class:

var theString = new java.lang.String("Hello, world")

Example 2. Accessing methods of a Java object.

Because the JavaObject theString is an instance of
java.lang.String , it inherits all the public methods of
java.lang.String . The following example uses the startsWith method
to check whether theString begins with “Hello”.

var theString = new java.lang.String("Hello, world")
theString.startsWith("Hello") // returns true

Example 3. Accessing inherited methods.

Because getClass is a method of Object , and java.lang.String
extends Object , the String class inherits the getClass method.
Consequently, getClass is also a method of the JavaObject which
instantiates String in JavaScript.

var theString = new java.lang.String("Hello, world")
theString.getClass() // returns java.lang.String

See also JavaArray , JavaClass , JavaPackage , Packages
220 Client-Side JavaScript Reference

Chapter 1, Objects, Methods, and Properties 221

JavaPackage

JavaPackage
A JavaScript reference to a Java package.

Created by A reference to the package name used with the Packages keyword:

Packages. JavaPackage

where JavaPackage is the name of the object’s Java package. If the package is
in the java , netscape , or sun packages, the Packages keyword is
optional.

Description In Java, a package is a collection of Java classes or other Java packages. For
example, the netscape package contains the package
netscape.javascript ; the netscape.javascript package contains the
classes JSObject and JSException.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a
reference to netscape is a JavaPackage . netscape.javascript is both
a JavaPackage and a property of the netscape JavaPackage .

A JavaClass object is a reference to one of the classes in a package, such as
netscape.javascript.JSObject . The JavaPackage and JavaClass
hierarchy reflect the Java package and class hierarchy.

Although the packages and classes contained in a JavaPackage are its
properties, you cannot use a for...in statement to enumerate them as you
can enumerate the properties of other objects.

Property
Summary

The properties of a JavaPackage are the JavaClass objects and any other
JavaPackage objects it contains.

Examples Suppose the Redwood corporation uses the Java redwood package to contain
various Java classes that it implements. The following code creates the
JavaPackage red :

var red = Packages.redwood

See also JavaArray , JavaClass , JavaObject , Packages

Core object

Implemented in JavaScript 1.1, NES 2.0

Layer
Layer
Corresponds to a layer in an HTML page and provides a means for
manipulating that layer.

Created by The HTML LAYER or ILAYER tag, or using cascading style sheet syntax. The
JavaScript runtime engine creates a Layer object corresponding to each layer in
your document. It puts these objects in an array in the document.layers
property. You access a Layer object by indexing this array.

To define a layer, use standard HTML syntax. If you specify the ID attribute,
you can use the value of that attribute to index into the layers array.

For a complete description of layers, see Dynamic HTML in Netscape
Communicator.

Some layer properties can be directly modified by assignment; for example,
"mylayer.visibility = hide ". A layer object also has methods that can
affect these properties.

Event handlers • onMouseOver

• onMouseOut

• onLoad

• onFocus

• onBlur

Property
Summary

Client-side object

Implemented in JavaScript 1.2

Property Description

above The layer object above this one in z-order, among all layers in
the document or the enclosing window object if this layer is
topmost.

background The image to use as the background for the layer’s canvas.

bgColor The color to use as a solid background color for the layer’s canvas.

below The layer object below this one in z-order, among all layers in
the document or null if this layer is at the bottom.

clip.bottom The bottom edge of the clipping rectangle (the part of the layer
that is visible.)
222 Client-Side JavaScript Reference

Layer
clip.height The height of the clipping rectangle (the part of the layer that is
visible.)

clip.left The left edge of the clipping rectangle (the part of the layer that is
visible.)

clip.right The right edge of the clipping rectangle (the part of the layer that
is visible.)

clip.top The top edge of the clipping rectangle (the part of the layer that is
visible.)

clip.width The width of the clipping rectangle (the part of the layer that is
visible.)

document The layer’s associated document.

left The horizontal position of the layer's left edge, in pixels, relative
to the origin of its parent layer.

name A string specifying the name assigned to the layer through the ID
attribute in the LAYER tag.

pageX The horizontal position of the layer, in pixels, relative to the page.

pageY The vertical position of the layer, in pixels, relative to the page.

parentLayer The layer object that contains this layer, or the enclosing
window object if this layer is not nested in another layer.

siblingAbove The layer object above this one in z-order, among all layers that
share the same parent layer, or null if the layer has no sibling
above.

siblingBelow The layer object below this one in z-order, among all layers that
share the same parent layer, or null if layer is at the bottom.

src A string specifying the URL of the layer’s content.

top The vertical position of the layer's top edge, in pixels, relative to
the origin of its parent layer.

visibility Whether or not the layer is visible.

window The window or Frame object that contains the layer, regardless of
whether the layer is nested within another layer.

x A convenience synonym for Layer.left .

y A convenience synonym for Layer.top .

zIndex The relative z-order of this layer with respect to its siblings.

Property Description
Chapter 1, Objects, Methods, and Properties 223

Layer
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Note Just as in the case of a document, if you want to define mouse click response
for a layer, you must capture onMouseDown and onMouseUp events at the
level of the layer and process them as you want.

For details about capturing events, see the Client-Side JavaScript Guide.

Method Description

captureEvents Sets the window or document to capture all events of the
specified type.

handleEvent Invokes the handler for the specified event.

load Changes the source of a layer to the contents of the specified
file, and simultaneously changes the width at which the
layer's HTML contents will be wrapped.

moveAbove Stacks this layer above the layer specified in the argument,
without changing either layer's horizontal or vertical position.

moveBelow Stacks this layer below the specified layer, without changing
either layer's horizontal or vertical position.

moveBy Changes the layer position by applying the specified deltas,
measured in pixels.

moveTo Moves the top-left corner of the window to the specified
screen coordinates.

moveToAbsolute Changes the layer position to the specified pixel coordinates
within the page (instead of the containing layer.)

releaseEvents Sets the layer to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

resizeBy Resizes the layer by the specified height and width values (in
pixels).

resizeTo Resizes the layer to have the specified height and width
values (in pixels).

routeEvent Passes a captured event along the normal event hierarchy.
224 Client-Side JavaScript Reference

Layer.above
If an event occurs in a point where multiple layers overlap, the topmost layer
gets the event, even if it is transparent. However, if a layer is hidden, it does not
get events.

above .

The layer object above this one in z-order, among all layers in the document
or the enclosing window object if this layer is topmost.

background .

The image to use as the background for the layer's canvas (which is the part of
the layer within the clip rectangle).

Description Each layer has a background property, whose value is an image object, whose
src attribute is a URL that indicates the image to use to provide a tiled
backdrop. The value is null if the layer has no backdrop. For example:

layer.background.src = "fishbg.gif";

below .

The layer object below this one in z-order, among all layers in the document
or null if this layer is at the bottom.

Property of Layer

Read-only

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Read-only

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 225

Layer.bgColor
bgColor .

A string specifying the color to use as a solid background color for the layer’s
canvas (the part of the layer within the clip rectangle).

Description The bgColor property is expressed as a hexadecimal RGB triplet or as a string
literal (see the Client-Side JavaScript Guide). This property is the JavaScript
reflection of the BGCOLOR attribute of the BODY tag.

You can set the bgColor property at any time.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the background color of the myLayer layer’s
canvas to aqua using a string literal:

myLayer.bgColor="aqua"

The following example sets the background color of the myLayer layer’s
canvas to aqua using a hexadecimal triplet:

myLayer.bgColor="00FFFF"

See also Layer.bgColor

captureEvents .

Sets the window or document to capture all events of the specified type.

Syntax captureEvents(eventType)

Parameters

Property of Layer

Implemented in JavaScript 1.2

Method of Layer

Implemented in JavaScript 1.2

eventType Type of event to be captured. Available event types are listed in the
Client-Side JavaScript Guide.
226 Client-Side JavaScript Reference

Layer.clip.bottom
Description When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use captureEvents in a signed script
and precede it with enableExternalCapture . For more information and an
example, see enableExternalCapture .

captureEvents works in tandem with releaseEvents , routeEvent , and
handleEvent . For information on handling events, see the Client-Side
JavaScript Guide.

clip.bottom .

The bottom edge of the clipping rectangle (the part of the layer that is visible.)
Any part of a layer that is outside the clipping rectangle is not displayed.

clip.height .

The height of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

clip.left .

The left edge of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

clip.right .

The right edge of the clipping rectangle (the part of the layer that is visible.)
Any part of a layer that is outside the clipping rectangle is not displayed.

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 227

Layer.clip.top
clip.top .

The top edge of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

clip.width .

The width of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

document .

The layer’s associated document.

Description Each layer object contains its own document object. This object can be used
to access the images, applets, embeds, links, anchors and layers that are
contained within the layer. Methods of the document object can also be
invoked to change the contents of the layer.

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Read-only

Implemented in JavaScript 1.2

Method of Layer

Implemented in JavaScript 1.2

event Name of an event for which the specified object has an event
handler.
228 Client-Side JavaScript Reference

Layer.left
Description handleEvent works in tandem with captureEvents , releaseEvents , and
routeEvent . For information on handling events, see the Client-Side JavaScript
Guide.

left .

The horizontal position of the layer's left edge, in pixels, relative to the origin of
its parent layer.

The Layer.x property is a convenience synonym for the left property.

See also Layer.top

load .

Changes the source of a layer to the contents of the specified file and
simultaneously changes the width at which the layer’s HTML contents are
wrapped.

Syntax load(sourcestring , width)

Parameters

Property of Layer

Implemented in JavaScript 1.2

Method of Layer

Implemented in JavaScript 1.2

sourcestring A string indicating the external file name.

width The width of the layer as a pixel value.
Chapter 1, Objects, Methods, and Properties 229

Layer.moveAbove
moveAbove .

Stacks this layer above the layer specified in the argument, without changing
either layer's horizontal or vertical position. After re-stacking, both layers will
share the same parent layer.

Syntax moveAbove(aLayer)

Parameters

moveBelow .

Stacks this layer below the specified layer, without changing either layer's
horizontal or vertical position. After re-stacking, both layers will share the same
parent layer.

Syntax moveBelow(aLayer)

Parameters

moveBy .

Changes the layer position by applying the specified deltas, measured in pixels.

Syntax moveBy(horizontal , vertical)

Parameters

Method of Layer

Implemented in JavaScript 1.2

aLayer The layer above which to move the current layer.

Method of Layer

Implemented in JavaScript 1.2

aLayer The layer below which to move the current layer.

Method of Layer

Implemented in JavaScript 1.2

horizontal The number of pixels by which to move the layer horizontally.

vertical The number of pixels by which to move the layer vertically.
230 Client-Side JavaScript Reference

Layer.moveTo
moveTo .

Moves the top-left corner of the window to the specified screen coordinates.

Syntax moveTo(x-coordinate , y-coordinate)

Parameters

Security To move a window offscreen, call the moveTo method in a signed script. For
information on security, see the Client-Side JavaScript Guide.

Description Changes the layer position to the specified pixel coordinates within the
containing layer. For ILayers, moves the layer relative to the natural inflow
position of the layer.

See also Layer.moveBy

moveToAbsolute .

Changes the layer position to the specified pixel coordinates within the page
(instead of the containing layer.)

Syntax moveToAbsolute(x, y)

Parameters

Description This method is equivalent to setting both the pageX and pageY properties of
the layer object.

Method of Layer

Implemented in JavaScript 1.2

x-coordinate An integer representing the top edge of the window in screen
coordinates.

y-coordinate An integer representing the left edge of the window in screen
coordinates.

Method of Layer

Implemented in JavaScript 1.2

x An integer representing the top edge of the window in pixel
coordinates.

y An integer representing the left edge of the window in pixel
coordinates.
Chapter 1, Objects, Methods, and Properties 231

Layer.name
name .

A string specifying the name assigned to the layer through the ID attribute in
the LAYER tag.

pageX .

The horizontal position of the layer, in pixels, relative to the page.

pageY .

The vertical position of the layer, in pixels, relative to the page.

parentLayer .

The layer object that contains this layer, or the enclosing window object if this
layer is not nested in another layer.

Property of Layer

Read-only

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Read-only

Implemented in JavaScript 1.2
232 Client-Side JavaScript Reference

Layer.releaseEvents
releaseEvents .

Sets the window or document to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

Syntax releaseEvents(eventType)

Parameters

Description If the original target of the event is a window, the window receives the event
even if it is set to release that type of event. releaseEvents works in tandem
with captureEvents , routeEvent , and handleEvent . For more information,
see the Client-Side JavaScript Guide.

resizeBy .

Resizes the layer by the specified height and width values (in pixels).

Syntax resizeBy(width , height)

Parameters

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer. This method has
the same effect as adding width and height to clip.width and
clip.height .

Method of Layer

Implemented in JavaScript 1.2

eventType Type of event to be captured.

Method of Layer

Implemented in JavaScript 1.2

width The number of pixels by which to resize the layer horizontally.

height The number of pixels by which to resize the layer vertically.
Chapter 1, Objects, Methods, and Properties 233

Layer.resizeTo
resizeTo .

Resizes the layer to have the specified height and width values (in pixels).

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer.

Syntax resizeTo(width , height)

Parameters

Description This method has the same effect setting clip.width and clip.height .

routeEvent .

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

Description If a sub-object (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvent works in tandem with captureEvents , releaseEvents , and
handleEvent . For more information, see the Client-Side JavaScript Guide.

Method of Layer

Implemented in JavaScript 1.2

width An integer representing the layer’s width in pixels.

height An integer representing the layer’s height in pixels.

Method of Layer

Implemented in JavaScript 1.2

event The event to route.
234 Client-Side JavaScript Reference

Layer.siblingAbove
siblingAbove .

The layer object above this one in z-order, among all layers that share the same
parent layer or null if the layer has no sibling above.

siblingBelow .

The layer object below this one in z-order, among all layers that share the
same parent layer or null if layer is at the bottom.

src .

A URL string specifying the source of the layer’s content. Corresponds to the
SRC attribute.

top .

The vertical position of the layer's left edge, in pixels, relative to the origin of its
parent layer.

The Layer.y property is a convenience synonym for the top property.

See also Layer.left

Property of Layer

Read-only

Implemented in JavaScript 1.2

Property of Layer

Read-only

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 235

Layer.visibility
visibility .

Whether or not the layer is visible.

Description A value of show means show the layer; hide means hide the layer; inherit
means inherit the visibility of the parent layer.

window .

The window or Frame object that contains the layer, regardless of whether the
layer is nested within another layer.

x .

The horizontal position of the layer's left edge, in pixels, relative to the origin of
its parent layer.

The x property is a convenience synonym for the Layer.left property.

See also Layer.y

Property of Layer

Implemented in JavaScript 1.2

Property of Layer

Read-only

Implemented in JavaScript 1.2

Property of Layer

Implemented in JavaScript 1.2
236 Client-Side JavaScript Reference

Layer.y
y .

The vertical position of the layer's left edge, in pixels, relative to the origin of its
parent layer.

The y property is a convenience synonym for the Layer.top property.

See also Layer.x

zIndex .

The relative z-order of this layer with respect to its siblings.

Description Sibling layers with lower numbered z-indexes are stacked underneath this
layer. The value of zIndex must be 0 or a positive integer.

Property of Layer

Implemented in JavaScript 1.2

Method of Layer

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 237

Link
Link
A piece of text, an image, or an area of an image identified as a hypertext link.
When the user clicks the link text, image, or area, the link hypertext reference
is loaded into its target window. Area objects are a type of Link object.

Created by By using the HTML A or AREA tag or by a call to the String.link method.
The JavaScript runtime engine creates a Link object corresponding to each A
and AREA tag in your document that supplies the HREF attribute. It puts these
objects as an array in the document.links property. You access a Link
object by indexing this array.

To define a link with the A or AREA tag, use standard HTML syntax with the
addition of JavaScript event handlers.

To define a link with the String.link method:

theString .link(hrefAttribute)

where:

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added onMouseOut event handler; added Area
objects; links array contains areas created with <AREA
HREF="...">

JavaScript 1.2: added x and y properties; added handleEvent
method

theString A String object.

hrefAttribute Any string that specifies the HREF attribute of the A tag; it should be
a valid URL (relative or absolute).
238 Client-Side JavaScript Reference

Link
Event handlers Area objects have the following event handlers:

• onDblClick

• onMouseOut

• onMouseOver

Link objects have the following event handlers:

• onClick

• onDblClick

• onKeyDown

• onKeyPress

• onKeyUp

• onMouseDown

• onMouseOut

• onMouseUp

• onMouseOver

Description Each Link object is a location object and has the same properties as a
location object.

If a Link object is also an Anchor object, the object has entries in both the
anchors and links arrays.

When a user clicks a Link object and navigates to the destination document
(specified by HREF="locationOrURL"), the destination document’s referrer
property contains the URL of the source document. Evaluate the referrer
property from the destination document.

You can use a Link object to execute a JavaScript function rather than link to a
hypertext reference by specifying the javascript: URL protocol for the link’s
HREF attribute. You might want to do this if the link surrounds an Image object
and you want to execute JavaScript code when the image is clicked. Or you
might want to use a link instead of a button to execute JavaScript code.

For example, when a user clicks the following links, the slower and faster
functions execute:

Slower
Faster
Chapter 1, Objects, Methods, and Properties 239

Link
You can use a Link object to do nothing rather than link to a hypertext
reference by specifying the javascript:void(0) URL protocol for the link’s
HREF attribute. You might want to do this if the link surrounds an Image object
and you want to use the link’s event handlers with the image. When a user
clicks the following link or image, nothing happens:

Click here to do nothing

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Property Description

hash Specifies an anchor name in the URL.

host Specifies the host and domain name, or IP address, of a network
host.

hostname Specifies the host:port portion of the URL.

href Specifies the entire URL.

pathname Specifies the URL-path portion of the URL.

port Specifies the communications port that the server uses.

protocol Specifies the beginning of the URL, including the colon.

search Specifies a query string.

target Reflects the TARGET attribute.

text A string containing the content of the corresponding A tag.

x The horizontal position of the link’s left edge, in pixels, relative to
the left edge of the document.

y The vertical position of the link’s top edge, in pixels, relative to
the top edge of the document.

Method Description

handleEvent Invokes the handler for the specified event.
240 Client-Side JavaScript Reference

Link
Examples Example 1. The following example creates a hypertext link to an anchor
named javascript_intro :

Introduction to JavaScript

Example 2. The following example creates a hypertext link to an anchor
named numbers in the file doc3.html in the window window2 . If window2
does not exist, it is created.

Numbers

Example 3. The following example takes the user back x entries in the history
list:

Click here

Example 4. The following example creates a hypertext link to a URL. The user
can use the set of radio buttons to choose between three URLs. The link’s
onClick event handler sets the URL (the link’s href property) based on the
selected radio button. The link also has an onMouseOver event handler that
changes the window’s status property. As the example shows, you must
return true to set the window.status property in the onMouseOver event
handler.

<SCRIPT>
var destHREF="http://home.netscape.com/"
</SCRIPT>
<FORM NAME="form1">
Choose a destination from the following list, then click "Click me" below.

<INPUT TYPE="radio" NAME="destination" VALUE="netscape"

onClick="destHREF='http://home.netscape.com/'"> Netscape home page

<INPUT TYPE="radio" NAME="destination" VALUE="sun"

onClick="destHREF='http://www.sun.com/'"> Sun home page

<INPUT TYPE="radio" NAME="destination" VALUE="rfc1867"

onClick="destHREF='http://www.ics.uci.edu/pub/ietf/html/rfc1867.txt'"> RFC 1867
<P><A HREF=""

onMouseOver="window.status='Click this if you dare!'; return true"
onClick="this.href=destHREF">
Click me

</FORM>
Chapter 1, Objects, Methods, and Properties 241

Link
Example 5: links array. In the following example, the linkGetter function
uses the links array to display the value of each link in the current document.
The example also defines several links and a button for running linkGetter.

function linkGetter() {
msgWindow=window.open("","msg","width=400,height=400")
msgWindow.document.write("links.length is " +

document.links.length + "
")
for (var i = 0; i < document.links.length; i++) {

msgWindow.document.write(document.links[i] + "
")
}

}

Netscape Home Page
China Adoptions
Bad Dog Chronicles
Lab Rescue
<P>
<INPUT TYPE="button" VALUE="Display links"

onClick="linkGetter()">

Example 6: Refer to Area object with links array. The following code refers
to the href property of the first Area object shown in Example 1.

document.links[0].href

Example 7: Area object with onMouseOver and onMouseOut event
handlers. The following example displays an image, globe.gif . The image
uses an image map that defines areas for the top half and the bottom half of the
image. The onMouseOver and onMouseOut event handlers display different
status bar messages depending on whether the mouse passes over or leaves the
top half or bottom half of the image. The HREF attribute is required when using
the onMouseOver and onMouseOut event handlers, but in this example the
image does not need a hypertext link, so the HREF attribute executes
javascript:void(0) , which does nothing.

<MAP NAME="worldMap">
<AREA NAME="topWorld" COORDS="0,0,50,25" HREF="javascript:void(0)"

onMouseOver="self.status='You are on top of the world';return true"
onMouseOut="self.status='You have left the top of the world';return true">

<AREA NAME="bottomWorld" COORDS="0,25,50,50" HREF="javascript:void(0)"
onMouseOver="self.status='You are on the bottom of the world';return true"
onMouseOut="self.status='You have left the bottom of the world';return true">

</MAP>

242 Client-Side JavaScript Reference

Link.handleEvent
Example 8: Simulate an Area object’s onClick using the HREF attribute.
The following example uses an Area object’s HREF attribute to execute a
JavaScript function. The image displayed, colors.gif , shows two sample
colors. The top half of the image is the color antiquewhite, and the bottom half
is white. When the user clicks the top or bottom half of the image, the function
setBGColor changes the document’s background color to the color shown in
the image.

<SCRIPT>
function setBGColor(theColor) {

document.bgColor=theColor
}
</SCRIPT>
Click the color you want for this document's background color
<MAP NAME="colorMap">

<AREA NAME="topColor" COORDS="0,0,50,25" HREF="javascript:setBGColor('antiquewhite')">
<AREA NAME="bottomColor" COORDS="0,25,50,50" HREF="javascript:setBGColor('white')">

</MAP>

See also Anchor , Image , link

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

Method of Link

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.
Chapter 1, Objects, Methods, and Properties 243

Link.hash
hash .

A string beginning with a hash mark (#) that specifies an anchor name in the
URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The hash property specifies a portion of the URL. This property applies to
HTTP URLs only.

Be careful using this property. Assume document.links[0] contains:

http://royalairways.com/fish.htm#angel

Then document.links[0].hash returns #angel . Assume you have this code:

hash = document.links[0].hash;
document.links[0].hash = hash;

Now, document.links[0].hash returns ##angel .

This behavior may change in a future release.

You can set the hash property at any time, although it is safer to set the href
property to change a location. If the hash that you specify cannot be found in
the current location, you get an error.

Setting the hash property navigates to the named anchor without reloading the
document. This differs from the way a document is loaded when other link
properties are set.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hash.

See also Link.host , Link.hostname , Link.href , Link.pathname , Link.port ,
Link.protocol , Link.search

Property of Link

Implemented in JavaScript 1.0
244 Client-Side JavaScript Reference

Link.host
host .

A string specifying the server name, subdomain, and domain name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is null, the host property is the same as the hostname
property.

You can set the host property at any time, although it is safer to set the href
property to change a location. If the host that you specify cannot be found in
the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname and port.

See also Link.hash , Link.hostname , Link.href , Link.pathname , Link.port ,
Link.protocol , Link.search

hostname .

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

Property of Link

Implemented in JavaScript 1.0

Property of Link

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 245

Link.href
You can set the hostname property at any time, although it is safer to set the
href property to change a location. If the hostname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname.

See also Link.host , Link.hash , Link.href , Link.pathname , Link.port ,
Link.protocol , Link.search

href .

A string specifying the entire URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The href property specifies the entire URL. Other link object properties are
substrings of the href property.

You can set the href property at any time.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the URL.

See also Link.hash , Link.host , Link.hostname , Link.pathname , Link.port ,
Link.protocol , Link.search

pathname .

A string specifying the URL-path portion of the URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of Link

Implemented in JavaScript 1.0

Property of Link

Implemented in JavaScript 1.0
246 Client-Side JavaScript Reference

Link.port
Description The pathname property specifies a portion of the URL. The pathname supplies
the details of how the specified resource can be accessed.

You can set the pathname property at any time, although it is safer to set the
href property to change a location. If the pathname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the pathname.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.port ,
Link.protocol , Link.search

port .

A string specifying the communications port that the server uses.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is 80 (the default), the host property is the same as the
hostname property.

You can set the port property at any time, although it is safer to set the href
property to change a location. If the port that you specify cannot be found in
the current location, you will get an error. If the port property is not specified,
it defaults to 80 on the server.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the port.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.pathname ,
Link.protocol , Link.search

Property of Link

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 247

Link.protocol
protocol .

A string specifying the beginning of the URL, up to and including the first
colon.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The protocol property specifies a portion of the URL. The protocol indicates
the access method of the URL. For example, the value "http:" specifies
HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript
code.

You can set the protocol property at any time, although it is safer to set the
href property to change a location. If the protocol that you specify cannot be
found in the current location, you get an error.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the protocol.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.pathname ,
Link.port , Link.search

search .

A string beginning with a question mark that specifies any query information in
the URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of Link

Implemented in JavaScript 1.0

Property of Link

Implemented in JavaScript 1.0
248 Client-Side JavaScript Reference

Link.target
Description The search property specifies a portion of the URL. This property applies to
http URLs only.

The search property contains variable and value pairs; each pair is separated
by an ampersand. For example, two pairs in a search string could look like the
following:

?x=7&y=5

You can set the search property at any time, although it is safer to set the href
property to change a location. If the search that you specify cannot be found in
the current location, you get an error.

See Section 3.3 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the search.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.pathname ,
Link.port , Link.protocol

target .

A string specifying the name of the window that displays the content of a
clicked hypertext link.

Description The target property initially reflects the TARGET attribute of the A or AREA
tags; however, setting target overrides this attribute.

You can set target using a string, if the string represents a window name. The
target property cannot be assigned the value of a JavaScript expression or
variable.

You can set the target property at any time.

Examples The following example specifies that responses to the musicInfo form are
displayed in the msgWindow window:

document.musicInfo.target="msgWindow"

See also Form

Property of Link

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 249

Link.text
text .

A string containing the content of the corresponding A tag.

x .

The horizontal position of the link’s left edge, in pixels, relative to the left edge
of the document.

See also Link.y

y .

The vertical position of the link’s top edge, in pixels, relative to the top edge of
the document.

See also Link.x

Property of Link

Implemented in JavaScript 1.2

Property of Link

Read-only

Implemented in JavaScript 1.2

Property of Link

Read-only

Implemented in JavaScript 1.2
250 Client-Side JavaScript Reference

Location
Location
Contains information on the current URL.

Created by Location objects are predefined JavaScript objects that you access through the
location property of a window object.

Description The location object represents the complete URL associated with a given
window object. Each property of the location object represents a different
portion of the URL.

In general, a URL has this form:

protocol // host : port / pathname #hash ?search

For example:

http://home.netscape.com/assist/extensions.html#topic1?x=7&y=2

These parts serve the following purposes:

• protocol represents the beginning of the URL, up to and including the first
colon.

• host represents the host and domain name, or IP address, of a network
host.

• port represents the communications port that the server uses for
communications.

• pathname represents the URL-path portion of the URL.

• hash represents an anchor name fragment in the URL, including the hash
mark (#). This property applies to HTTP URLs only.

• search represents any query information in the URL, including the
question mark (?). This property applies to HTTP URLs only. The search
string contains variable and value pairs; each pair is separated by an
ampersand (&).

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added reload , replace methods
Chapter 1, Objects, Methods, and Properties 251

Location
A Location object has a property for each of these parts of the URL. See the
individual properties for more information. A Location object has two other
properties not shown here:

• href represents a complete URL.

• hostname represents the concatenation host :port .

If you assign a string to the location property of an object, JavaScript creates a
location object and assigns that string to its href property. For example, the
following two statements are equivalent and set the URL of the current window
to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

The location object is contained by the window object and is within its scope.
If you refer to a location object without specifying a window, the location
object represents the current location. If you refer to a location object and
specify a window name, as in windowReference.location , the location
object represents the location of the specified window.

In event handlers, you must specify window.location instead of simply using
location . Due to the scoping of static objects in JavaScript, a call to location
without specifying an object name is equivalent to document.location , which
is a synonym for document.URL .

Location is not a property of the document object; its equivalent is the
document.URL property. The document.location property, which is a
synonym for document.URL , is deprecated.

How documents are loaded when location is set. When you set the
location object or any of its properties except hash, whether a new
document is loaded depends on which version of the browser you are running:

• In JavaScript 1.0, setting location does a conditional (“If-modified-since”)
HTTP GET operation, which returns no data from the server unless the
document has been modified since the last version downloaded.

• In JavaScript 1.1 and later, the effect of setting location depends on the
user’s setting for comparing a document to the original over the network.
The user interface option for setting this preference differs in browser
versions. The user decides whether to check a document in cache every
252 Client-Side JavaScript Reference

Location
time it is accessed, once per session, or never. The document is reloaded
from cache if the user sets never or once per session; the document is
reloaded from the server only if the user chooses every time.

Syntax for common URL types. When you specify a URL, you can use
standard URL formats and JavaScript statements. The following table shows the
syntax for specifying some of the most common types of URLs.

The following list explains some of the protocols:

• The javascript: protocol evaluates the expression after the colon (:), if
there is one, and loads a page containing the string value of the expression,
unless it is undefined. If the expression evaluates to undefined (by calling a
void function, for example javascript:void(0)), no new page loads.
Note that loading a new page over your script’s page clears the page’s
variables, functions, and so on.

• The view-source: protocol displays HTML code that was generated with
JavaScript document.write and document.writeln methods. For
information on printing and saving generated HTML, see
document.write .

Table 1.1 URL syntax.

URL type Protocol Example

JavaScript code javascript: javascript:history.go(-1)

Navigator source
viewer

view-source: view-source:wysiwyg://0/file:/c|/
temp/genhtml.html

Navigator info about: about:cache

World Wide Web http: http://home.netscape.com/

File file:/ file:///javascript/methods.html

FTP ftp: ftp://ftp.mine.com/home/mine

MailTo mailto: mailto:info@netscape.com

Usenet news: news://news.scruznet.com/
comp.lang.javascript

Gopher gopher: gopher.myhost.com
Chapter 1, Objects, Methods, and Properties 253

Location
• The about: protocol provides information on Navigator. For example:

— about: by itself is the same as choosing About Communicator from the
Navigator Help menu.

— about:cache displays disk-cache statistics.

— about:plugins displays information about plug-ins you have
configured. This is the same as choosing About Plug-ins from the
Navigator Help menu.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following two statements are equivalent and set the URL of
the current window to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

Property Description

hash Specifies an anchor name in the URL.

host Specifies the host and domain name, or IP address, of a network
host.

hostname Specifies the host:port portion of the URL.

href Specifies the entire URL.

pathname Specifies the URL-path portion of the URL.

port Specifies the communications port that the server uses.

protocol Specifies the beginning of the URL, including the colon.

search Specifies a query.

Method Description

reload Forces a reload of the window’s current document.

replace Loads the specified URL over the current history entry.
254 Client-Side JavaScript Reference

Location.hash
Example 2. The following statement sets the URL of a frame named frame2 to
the Sun home page:

parent.frame2.location.href="http://www.sun.com/"

See also the examples for Anchor .

See also History , document.URL

hash .

A string beginning with a hash mark (#) that specifies an anchor name in the
URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The hash property specifies a portion of the URL. This property applies to
HTTP URLs only.

You can set the hash property at any time, although it is safer to set the href
property to change a location. If the hash that you specify cannot be found in
the current location, you get an error.

Setting the hash property navigates to the named anchor without reloading the
document. This differs from the way a document is loaded when other
location properties are set (see “How documents are loaded when location is
set” on page 252).

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hash.

Property of Location

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 255

Location.host
Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.has h = " +
newWindow.location.hash + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.hash = #checkbox_object

See also Location.host , Location.hostname , Location.href ,
Location.pathname , Location.port , Location.protocol ,
Location.search

host .

A string specifying the server name, subdomain, and domain name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is null, the host property is the same as the hostname
property.

You can set the host property at any time, although it is safer to set the href
property to change a location. If the host that you specify cannot be found in
the current location, you get an error.

Property of Location

Implemented in JavaScript 1.0
256 Client-Side JavaScript Reference

Location.hostname
See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname and port.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.hos t = " +
newWindow.location.host + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.host = home.netscape.com

See also Location.hash , Location.hostname , Location.href ,
Location.pathname , Location.port , Location.protocol ,
Location.search

hostname .

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

Property of Location

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 257

Location.href
You can set the hostname property at any time, although it is safer to set the
href property to change a location. If the hostname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.hostNam e = " +
newWindow.location.hostName + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.hostName = home.netscape.com

See also Location.hash , Location.host , Location.href ,
Location.pathname , Location.port , Location.protocol ,
Location.search

href .

A string specifying the entire URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of Location

Implemented in JavaScript 1.0
258 Client-Side JavaScript Reference

Location.href
Description The href property specifies the entire URL. Other location object properties
are substrings of the href property. If you want to change the URL associated
with a window, you should do so by changing the href property; this correctly
updates all of the other properties.

You can set the href property at any time.

Omitting a property name from the location object is equivalent to specifying
location.href . For example, the following two statements are equivalent and
set the URL of the current window to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the URL.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display all the properties of newWindow.location in a window
called msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.protoco l = " +
newWindow.location.protocol + "<P>")

msgWindow.document.write("newWindow.location.hos t = " +
newWindow.location.host + "<P>")

msgWindow.document.write("newWindow.location.hostNam e = " +
newWindow.location.hostName + "<P>")

msgWindow.document.write("newWindow.location.por t = " +
newWindow.location.port + "<P>")

msgWindow.document.write("newWindow.location.pathnam e = " +
newWindow.location.pathname + "<P>")

msgWindow.document.write("newWindow.location.has h = " +
newWindow.location.hash + "<P>")

msgWindow.document.write("newWindow.location.searc h = " +
newWindow.location.search + "<P>")

msgWindow.document.close()
Chapter 1, Objects, Methods, and Properties 259

Location.pathname
The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.protocol = http:
newWindow.location.host = home.netscape.com
newWindow.location.hostName = home.netscape.com
newWindow.location.port =
newWindow.location.pathname =

/comprod/products/navigator/version_2.0/script/
script_info/objects.html

newWindow.location.hash = #checkbox_object
newWindow.location.search =

See also Location.hash , Location.host , Location.hostname ,
Location.pathname , Location.port , Location.protocol ,
Location.search

pathname .

A string specifying the URL-path portion of the URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The pathname property specifies a portion of the URL. The pathname supplies
the details of how the specified resource can be accessed.

You can set the pathname property at any time, although it is safer to set the
href property to change a location. If the pathname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the pathname.

Property of Location

Implemented in JavaScript 1.0
260 Client-Side JavaScript Reference

Location.port
Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.pathnam e = " +
newWindow.location.pathname + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.pathname =
/comprod/products/navigator/version_2.0/script/
script_info/objects.html

See also Location.hash , Location.host , Location.hostname ,
Location.href , Location.port , Location.protocol ,
Location.search

port .

A string specifying the communications port that the server uses.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon.

You can set the port property at any time, although it is safer to set the href
property to change a location. If the port that you specify cannot be found in
the current location, you get an error. If the port property is not specified, it
defaults to 80.

Property of Location

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 261

Location.protocol
See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the port.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.por t = " +
newWindow.location.port + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.port =

See also Location.hash , Location.host , Location.hostname ,
Location.href , Location.pathname , Location.protocol ,
Location.search

protocol .

A string specifying the beginning of the URL, up to and including the first
colon.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The protocol property specifies a portion of the URL. The protocol indicates
the access method of the URL. For example, the value "http:" specifies
HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript
code.

Property of Location

Implemented in JavaScript 1.0
262 Client-Side JavaScript Reference

Location.protocol
You can set the protocol property at any time, although it is safer to set the
href property to change a location. If the protocol that you specify cannot be
found in the current location, you get an error.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the protocol.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.protoco l = " +
newWindow.location.protocol + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.protocol = http:

See also Location.hash , Location.host , Location.hostname ,
Location.href , Location.pathname , Location.port ,
Location.search
Chapter 1, Objects, Methods, and Properties 263

Location.reload
reload .

Forces a reload of the window’s current document (the document specified by
the Location.href property).

Syntax reload([forceGet])

Parameters

Description This method uses the same policy that the browser’s Reload button uses. The
user interface for setting the default value of this policy varies for different
browser versions.

By default, the reload method does not force a transaction with the server.
However, if the user has set the preference to check every time, the method
does a “conditional GET” request using an If-modified-since HTTP header, to
ask the server to return the document only if its last-modified time is newer
than the time the client keeps in its cache. In other words, reload reloads from
the cache, unless the user has specified to check every time and the document
has changed on the server since it was last loaded and saved in the cache.

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Clicking another
button lets the user reload the document.

<SCRIPT>
function displayImage(theImage) {

document.images[0].src=theImage
}
</SCRIPT>

Method of Location

Implemented in JavaScript 1.1

forceGet If you supply true , forces an unconditional HTTP GET of the
document from the server. This should not be used unless you have
reason to believe that disk and memory caches are off or broken, or
the server has a new version of the document (for example, if it is
generated by a CGI on each request).
264 Client-Side JavaScript Reference

Location.replace
<FORM NAME="imageForm">
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED

onClick="displayImage('seaotter.gif')">Sea otter

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"

onClick="displayImage('orca.gif')">Killer whale

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"

onClick="displayImage('humpback.gif')">Humpback whale

<P><INPUT TYPE="button" VALUE="Click here to reload"
onClick="window.location.reload()">

</FORM>

See also Location.replace

replace .

Loads the specified URL over the current history entry.

Syntax replace(URL)

Parameters

Description The replace method loads the specified URL over the current history entry.
After calling the replace method, the user cannot navigate to the previous URL
by using browser’s Back button.

If your program will be run with JavaScript 1.0, you could put the following
line in a SCRIPT tag early in your program. This emulates replace , which was
introduced in JavaScript 1.1:

if (location.replace == null)
location.replace = location.assign

The replace method does not create a new entry in the history list. To create
an entry in the history list while loading a URL, use the History.go method.

Method of Location

Implemented in JavaScript 1.1

URL A string specifying the URL to load.
Chapter 1, Objects, Methods, and Properties 265

Location.replace
Examples The following example lets the user choose among several catalogs to display.
The example displays two sets of radio buttons which let the user choose a
season and a category, for example the Spring/Summer Clothing catalog or the
Fall/Winter Home & Garden catalog. When the user clicks the Go button, the
displayCatalog function executes the replace method, replacing the current
URL with the URL appropriate for the catalog the user has chosen. After
invoking displayCatalog , the user cannot navigate to the previous URL (the
list of catalogs) by using browser’s Back button.

<SCRIPT>
function displayCatalog() {

var seaName=""
var catName=""

for (var i=0 ; i < document.catalogForm.season.length; i++) {
if (document.catalogForm.season[i].checked) {

seaName=document.catalogForm.season[i].value
i=document.catalogForm.season.length

}
}

for (var i in document.catalogForm.category) {
if (document.catalogForm.category[i].checked) {

catName=document.catalogForm.category[i].value
i=document.catalogForm.category.length

}
}
fileName=seaName + catName + ".html"
location.replace(fileName)

}
</SCRIPT>

<FORM NAME="catalogForm">
Which catalog do you want to see?

<P>Season

<INPUT TYPE="radio" NAME="season" VALUE="q1" CHECKED>Spring/Summer

<INPUT TYPE="radio" NAME="season" VALUE="q3">Fall/Winter

<P>Category

<INPUT TYPE="radio" NAME="category" VALUE="clo" CHECKED>Clothing

<INPUT TYPE="radio" NAME="category" VALUE="lin">Linens

<INPUT TYPE="radio" NAME="category" VALUE="hom">Home & Garden

<P><INPUT TYPE="button" VALUE="Go" onClick="displayCatalog()">
</FORM>

See also History , window.open , History.go , Location.reload
266 Client-Side JavaScript Reference

Location.search
search .

A string beginning with a question mark that specifies any query information in
the URL.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The search property specifies a portion of the URL. This property applies to
HTTP URLs only.

The search property contains variable and value pairs; each pair is separated
by an ampersand. For example, two pairs in a search string could look as
follows:

?x=7&y=5

You can set the search property at any time, although it is safer to set the href
property to change a location. If the search that you specify cannot be found in
the current location, you get an error.

See Section 3.3 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the search.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW")

msgWindow.document.write("newWindow.location.hre f = " +
newWindow.location.href + "<P>")

msgWindow.document.close()
msgWindow.document.write("newWindow.location.searc h = " +

newWindow.location.search + "<P>")
msgWindow.document.close()

The previous example displays the following output:

newWindow.location.href =
http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW

newWindow.location.search = ?qt=RFC+1738+&col=WW

Property of Location

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 267

Location.search
See also Location.hash , Location.host , Location.hostname ,
Location.href , Location.pathname , Location.port ,
Location.protocol
268 Client-Side JavaScript Reference

Math
Math
A built-in object that has properties and methods for mathematical constants
and functions. For example, the Math object’s PI property has the value of pi.

Created by The Math object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description All properties and methods of Math are static. You refer to the constant PI as
Math.PI and you call the sine function as Math.sin(x) , where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses
several Math constants and methods, so you don’t have to type “Math”
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Property
Summary

Core object

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property Description

E Euler’s constant and the base of natural logarithms, approximately
2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

PI Ratio of the circumference of a circle to its diameter, approximately
3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.
Chapter 1, Objects, Methods, and Properties 269

Math
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler’s
constant, the base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, base exponent .

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.
270 Client-Side JavaScript Reference

Math.abs
abs .

Returns the absolute value of a number.

Syntax abs(x)

Parameters

Examples The following function returns the absolute value of the variable x :

function getAbs(x) {
return Math.abs(x)

}

Description Because abs is a static method of Math , you always use it as Math.abs() ,
rather than as a method of a Math object you created.

acos .

Returns the arccosine (in radians) of a number.

Syntax acos(x)

Parameters

Description The acos method returns a numeric value between 0 and pi radians. If the
value of number is outside this range, it returns NaN.

Because acos is a static method of Math , you always use it as Math.acos() ,
rather than as a method of a Math object you created.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 271

Math.asin
Examples The following function returns the arccosine of the variable x :

function getAcos(x) {
return Math.acos(x)

}

If you pass -1 to getAcos , it returns 3.141592653589793; if you pass 2, it returns
NaN because 2 is out of range.

See also Math.asin , Math.atan , Math.atan2 , Math.cos , Math.sin , Math.tan

asin .

Returns the arcsine (in radians) of a number.

Syntax asin(x)

Parameters

Description The asin method returns a numeric value between -pi/2 and pi/2 radians. If
the value of number is outside this range, it returns NaN.

Because asin is a static method of Math , you always use it as Math.asin() ,
rather than as a method of a Math object you created.

Examples The following function returns the arcsine of the variable x :

function getAsin(x) {
return Math.asin(x)

}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns NaN because 2 is out of range.

See also Math.acos , Math.atan , Math.atan2 , Math.cos , Math.sin , Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
272 Client-Side JavaScript Reference

Math.atan
atan .

Returns the arctangent (in radians) of a number.

Syntax atan(x)

Parameters

Description The atan method returns a numeric value between -pi/2 and pi/2 radians.

Because atan is a static method of Math , you always use it as Math.atan() ,
rather than as a method of a Math object you created.

Examples The following function returns the arctangent of the variable x :

function getAtan(x) {
return Math.atan(x)

}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.

See also Math.acos , Math.asin , Math.atan2 , Math.cos , Math.sin , Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 273

Math.atan2
atan2 .

Returns the arctangent of the quotient of its arguments.

Syntax atan2(y, x)

Parameters

Description The atan2 method returns a numeric value between -pi and pi representing the
angle theta of an (x,y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x,y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of
those two arguments.

Because atan2 is a static method of Math , you always use it as Math.atan2() ,
rather than as a method of a Math object you created.

Examples The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
return Math.atan2(x,y)

}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

See also Math.acos , Math.asin , Math.atan , Math.cos , Math.sin , Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

y, x Number
274 Client-Side JavaScript Reference

Math.ceil
ceil .

Returns the smallest integer greater than or equal to a number.

Syntax ceil(x)

Parameters

Description Because ceil is a static method of Math , you always use it as Math.ceil() ,
rather than as a method of a Math object you created.

Examples The following function returns the ceil value of the variable x :

function getCeil(x) {
return Math.ceil(x)

}

If you pass 45.95 to getCeil , it returns 46; if you pass -45.95, it returns -45.

See also Math.floor

cos .

Returns the cosine of a number.

Syntax cos(x)

Parameters

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 275

Math.E
Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Math , you always use it as Math.cos() ,
rather than as a method of a Math object you created.

Examples The following function returns the cosine of the variable x :

function getCos(x) {
return Math.cos(x)

}

If x equals 2*Math.PI , getCos returns 1; if x equals Math.PI , the getCos
method returns -1.

See also Math.acos , Math.asin , Math.atan , Math.atan2 , Math.sin ,
Math.tan

E .

Euler’s constant and the base of natural logarithms, approximately 2.718.

Description Because E is a static property of Math , you always use it as Math.E , rather than
as a property of a Math object you created.

Examples The following function returns Euler’s constant:

function getEuler() {
return Math.E

}

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
276 Client-Side JavaScript Reference

Math.exp
exp .

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the
natural logarithms.

Syntax exp(x)

Parameters

Description Because exp is a static method of Math , you always use it as Math.exp() ,
rather than as a method of a Math object you created.

Examples The following function returns the exponential value of the variable x :

function getExp(x) {
return Math.exp(x)

}

If you pass getExp the value 1, it returns 2.718281828459045.

See also Math.E , Math.log , Math.pow

floor .

Returns the largest integer less than or equal to a number.

Syntax floor(x)

Parameters

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 277

Math.LN10
Description Because floor is a static method of Math , you always use it as Math.floor() ,
rather than as a method of a Math object you created.

Examples The following function returns the floor value of the variable x :

function getFloor(x) {
return Math.floor(x)

}

If you pass 45.95 to getFloor , it returns 45; if you pass -45.95, it returns -46.

See also Math.ceil

LN10 .

The natural logarithm of 10, approximately 2.302.

Examples The following function returns the natural log of 10:

function getNatLog10() {
return Math.LN10

}

Description Because LN10 is a static property of Math , you always use it as Math.LN10 ,
rather than as a property of a Math object you created.

LN2 .

The natural logarithm of 2, approximately 0.693.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
278 Client-Side JavaScript Reference

Math.log
Examples The following function returns the natural log of 2:

function getNatLog2() {
return Math.LN2

}

Description Because LN2 is a static property of Math , you always use it as Math.LN2 , rather
than as a property of a Math object you created.

log .

Returns the natural logarithm (base E) of a number.

Syntax log(x)

Parameters

Description If the value of number is negative, the return value is always NaN.

Because log is a static method of Math , you always use it as Math.log() ,
rather than as a method of a Math object you created.

Examples The following function returns the natural log of the variable x :

function getLog(x) {
return Math.log(x)

}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns -Infinity ; if you pass it the value -1, it returns NaN
because -1 is out of range.

See also Math.exp , Math.pow

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 279

Math.LOG10E
LOG10E .

The base 10 logarithm of E (approximately 0.434).

Examples The following function returns the base 10 logarithm of E:

function getLog10e() {
return Math.LOG10E

}

Description Because LOG10E is a static property of Math , you always use it as
Math.LOG10E , rather than as a property of a Math object you created.

LOG2E .

The base 2 logarithm of E (approximately 1.442).

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math.LOG2E

}

Description Because LOG2E is a static property of Math , you always use it as Math.LOG2E ,
rather than as a property of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
280 Client-Side JavaScript Reference

Math.max
max .

Returns the larger of two numbers.

Syntax max(x, y)

Parameters

Description Because max is a static method of Math , you always use it as Math.max() ,
rather than as a method of a Math object you created.

Examples The following function evaluates the variables x and y :

function getMax(x,y) {
return Math.max(x,y)

}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

See also Math.min

min .

Returns the smaller of two numbers.

Syntax min(x, y)

Parameters

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x, y Numbers.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x, y Numbers.
Chapter 1, Objects, Methods, and Properties 281

Math.PI
Description Because min is a static method of Math , you always use it as Math.min() ,
rather than as a method of a Math object you created.

Examples The following function evaluates the variables x and y :

function getMin(x,y) {
return Math.min(x,y)

}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

See also Math.max

PI .

The ratio of the circumference of a circle to its diameter, approximately
3.14159.

Examples The following function returns the value of pi:

function getPi() {
return Math.PI

}

Description Because PI is a static property of Math , you always use it as Math.PI , rather
than as a property of a Math object you created.

pow .

Returns base to the exponent power, that is, base exponent.

Syntax pow(x, y)

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
282 Client-Side JavaScript Reference

Math.random
Parameters

Description Because pow is a static method of Math , you always use it as Math.pow() ,
rather than as a method of a Math object you created.

Examples function raisePower(x,y) {
return Math.pow(x,y)

}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also Math.exp , Math.log

random .

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.

Syntax random()

Parameters None.

Description Because random is a static method of Math , you always use it as
Math.random() , rather than as a method of a Math object you created.

Examples //Returns a random number between 0 and 1
function getRandom() {

return Math.random()
}

base The base number

exponent The exponent to which to raise base

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 283

Math.round
round .

Returns the value of a number rounded to the nearest integer.

Syntax round(x)

Parameters

Description If the fractional portion of number is .5 or greater, the argument is rounded to
the next higher integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lower integer.

Because round is a static method of Math , you always use it as Math.round() ,
rather than as a method of a Math object you created.

Examples //Returns the value 20
x=Math.round(20.49)

//Returns the value 21
x=Math.round(20.5)

//Returns the value -20
x=Math.round(-20.5)

//Returns the value -21
x=Math.round(-20.51)

sin .

Returns the sine of a number.

Syntax sin(x)

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
284 Client-Side JavaScript Reference

Math.sqrt
Parameters

Description The sin method returns a numeric value between -1 and 1, which represents
the sine of the argument.

Because sin is a static method of Math , you always use it as Math.sin() ,
rather than as a method of a Math object you created.

Examples The following function returns the sine of the variable x :

function getSine(x) {
return Math.sin(x)

}

If you pass getSine the value Math.PI/2 , it returns 1.

See also Math.acos , Math.asin , Math.atan , Math.atan2 , Math.cos ,
Math.tan

sqrt .

Returns the square root of a number.

Syntax sqrt(x)

Parameters

Description If the value of number is negative, sqrt returns NaN.

Because sqrt is a static method of Math , you always use it as Math.sqrt() ,
rather than as a method of a Math object you created.

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 285

Math.SQRT1_2
Examples The following function returns the square root of the variable x :

function getRoot(x) {
return Math.sqrt(x)

}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

SQRT1_2 .

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Examples The following function returns 1 over the square root of 2:

function getRoot1_2() {
return Math.SQRT1_2

}

Description Because SQRT1_2 is a static property of Math , you always use it as
Math.SQRT1_2 , rather than as a property of a Math object you created.

SQRT2 .

The square root of 2, approximately 1.414.

Examples The following function returns the square root of 2:

function getRoot2() {
return Math.SQRT2

}

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
286 Client-Side JavaScript Reference

Math.tan
Description Because SQRT2 is a static property of Math , you always use it as Math.SQRT2 ,
rather than as a property of a Math object you created.

tan .

Returns the tangent of a number.

Syntax tan(x)

Parameters

Description The tan method returns a numeric value that represents the tangent of the
angle.

Because tan is a static method of Math , you always use it as Math.tan() ,
rather than as a method of a Math object you created.

Examples The following function returns the tangent of the variable x :

function getTan(x) {
return Math.tan(x)

}

See also Math.acos , Math.asin , Math.atan , Math.atan2 , Math.cos ,
Math.sin

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 287

MimeType
MimeType
A MIME type (Multipart Internet Mail Extension) supported by the client.

Created by You do not create MimeType objects yourself. These objects are predefined
JavaScript objects that you access through the mimeTypes array of the
navigator or Plugin object:

navigator.mimeTypes[index]

where index is either an integer representing a MIME type supported by the
client or a string containing the type of a MimeType object (from the
MimeType.type property).

Description Each MimeType object is an element in a mimeTypes array. The mimeTypes
array is a property of both navigator and Plugin objects. For example, the
following table summarizes the values for displaying JPEG images:

Property
Summary

Client-side object

Implemented in JavaScript 1.1

Expression Value

navigator.mimeTypes["image/jpeg"].type image/jpeg

navigator.mimeTypes["image/jpeg"].description JPEG Image

navigator.mimeTypes["image/jpeg"].suffixes jpeg, jpg, jpe, jfif,
pjpeg, pjp

navigator.mimeTypes["image/jpeg"].enabledPlugins null

Property Description

description A description of the MIME type.

enabledPlugin Reference to the Plugin object configured for the MIME
type.

suffixes A string listing possible filename extensions for the MIME
type, for example "mpeg, mpg, mpe, mpv, vbs,
mpegv" .

type The name of the MIME type, for example "video/mpeg" or
"audio/x-wav" .
288 Client-Side JavaScript Reference

MimeType
Method Summary This object inherits the watch and unwatch methods from Object .

Examples The following code displays the type , description , suffixes , and
enabledPlugin properties for each MimeType object on a client:

document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
"<TH ALIGN=left>i",
"<TH ALIGN=left>type",
"<TH ALIGN=left>description",
"<TH ALIGN=left>suffixes",
"<TH ALIGN=left>enabledPlugin.name</TR>")

for (i=0 ; i < navigator.mimeTypes.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,

"<TD>",navigator.mimeTypes[i].type,
"<TD>",navigator.mimeTypes[i].description,
"<TD>",navigator.mimeTypes[i].suffixes)

if (navigator.mimeTypes[i].enabledPlugin==null) {
document.writeln(
"<TD>None",
"</TR>")

} else {
document.writeln(
"<TD>",navigator.mimeTypes[i].enabledPlugin.name,
"</TR>")

}
}
document.writeln("</TABLE>")

The preceding example displays output similar to the following:

See also navigator , navigator.mimeTypes , Plugin

i type description suffixes enabledPlugin.name

 0 audio/aiff AIFF aif, aiff LiveAudio

 1 audio/wav WAV wav LiveAudio

 2 audio/x-midi MIDI mid, midi LiveAudio

 3 audio/midi MIDI mid, midi LiveAudio

 4 video/msvideo Video for Windows avi NPAVI32 Dynamic
Link Library

 5 * Netscape Default Plugin Netscape Default
Plugin

6 zz-application/zz-winassoc-TGZ TGZ None
Chapter 1, Objects, Methods, and Properties 289

MimeType.description
description .

A human-readable description of the data type described by the MIME type
object.

enabledPlugin .

The Plugin object for the plug-in that is configured for the specified MIME
type If the MIME type does not have a plug-in configured, enabledPlugin is
null.

Description Use the enabledPlugin property to determine which plug-in is configured for
a specific MIME type. Each plug-in may support multiple MIME types, and each
MIME type could potentially be supported by multiple plug-ins. However, only
one plug-in can be configured for a MIME type. (On Macintosh and Unix, the
user can configure the handler for each MIME type; on Windows, the handler is
determined at browser start-up time.)

The enabledPlugin property is a reference to a Plugin object that represents
the plug-in that is configured for the specified MIME type.

You might need to know which plug-in is configured for a MIME type, for
example, to dynamically emit an EMBED tag on the page if the user has a plug-
in configured for the MIME type.

Property of MimeType

Read-only

Implemented in JavaScript 1.1

Property of MimeType

Read-only

Implemented in JavaScript 1.1
290 Client-Side JavaScript Reference

MimeType.suffixes
Examples The following example determines whether the Shockwave plug-in is installed.
If it is, a movie is displayed.

// Can we display Shockwave movies?
mimetype = navigator.mimeTypes["application/x-director"]
if (mimetype) {

// Yes, so can we display with a plug-in?
plugin = mimetype.enabledPlugin
if (plugin)

// Yes, so show the data in-line
document.writeln("Here\'s a movie: <EMBED SRC=mymovie.dir HEIGHT=100 WIDTH=100>")
else
// No, so provide a link to the data
document.writeln("Click here to see a movie.")

} else {
// No, so tell them so
document.writeln("Sorry, can't show you this cool movie.")

}

suffixes .

A string listing possible file suffixes (also known as filename extensions) for the
MIME type.

Description The suffixes property is a string consisting of each valid suffix (typically three
letters long) separated by commas. For example, the suffixes for the "audio/

x-midi" MIME type are "mid, midi" .

type .

A string specifying the name of the MIME type. This string distinguishes the
MIME type from all others; for example "video/mpeg" or "audio/x-wav" .

Property of MimeType

Property of MimeType

Read-only

Implemented in JavaScript 1.1

Property of MimeType

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 291

navigator
navigator
Contains information about the version of Navigator in use.

Created by The JavaScript runtime engine on the client automatically creates the
navigator object.

Description Use the navigator object to determine which version of the Navigator your
users have, what MIME types the user’s Navigator can handle, and what plug-
ins the user has installed. All of the properties of the navigator object are
read-only.

Property
Summary

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added mimeTypes and plugins properties; added
javaEnabled and taintEnabled methods.

JavaScript 1.2: added language and platform properties; added
preference and savePreferences methods.

Property Description

appCodeName Specifies the code name of the browser.

appName Specifies the name of the browser.

appVersion Specifies version information for the Navigator.

language Indicates the translation of the Navigator being used.

mimeTypes An array of all MIME types supported by the client.

platform Indicates the machine type for which the Navigator was
compiled.

plugins An array of all plug-ins currently installed on the client.

userAgent Specifies the user-agent header.
292 Client-Side JavaScript Reference

navigator.appCodeName
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

appCodeName .

A string specifying the code name of the browser.

Examples The following example displays the value of the appCodeName property:

document.write("The value of navigator.appCodeName is " +
navigator.appCodeName)

For Navigator 2.0 and later, this displays the following:

The value of navigator.appCodeName is Mozilla

Method Description

javaEnabled Tests whether Java is enabled.

plugins.refresh Makes newly installed plug-ins available and optionally
reloads open documents that contain plug-ins.

preference Allows a signed script to get and set certain Navigator
preferences.

savePreferences Saves the Navigator preferences to the local file
prefs.js .

taintEnabled Specifies whether data tainting is enabled.

Property of navigator

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 293

navigator.appName
appName .

A string specifying the name of the browser.

Examples The following example displays the value of the appName property:

document.write("The value of navigator.appName is " +
navigator.appName)

For Navigator 2.0 and 3.0, this displays the following:

The value of navigator.appName is Netscape

appVersion .

A string specifying version information for the Navigator.

Description The appVersion property specifies version information in the following
format:

releaseNumber (platform ; country)

The values contained in this format are the following:

• releaseNumber is the version number of the Navigator. For example,
"2.0b4" specifies Navigator 2.0, beta 4.

• platform is the platform upon which the Navigator is running. For
example, "Win16" specifies a 16-bit version of Windows such as Windows
3.1.

• country is either "I" for the international release, or "U" for the domestic
U.S. release. The domestic release has a stronger encryption feature than
the international release.

Property of navigator

Read-only

Implemented in JavaScript 1.0

Property of navigator

Read-only

Implemented in JavaScript 1.0
294 Client-Side JavaScript Reference

navigator.appVersion
Examples Example 1. The following example displays version information for the
Navigator:

document.write("The value of navigator.appVersion is " +
navigator.appVersion)

For Navigator 2.0 on Windows 95, this displays the following:

The value of navigator.appVersion is 2.0 (Win95, I)

For Navigator 3.0 on Windows NT, this displays the following:

The value of navigator.appVersion is 3.0 (WinNT, I)

Example 2. The following example populates a Textarea object with newline
characters separating each line. Because the newline character varies from
platform to platform, the example tests the appVersion property to determine
whether the user is running Windows (appVersion contains "Win" for all
versions of Windows). If the user is running Windows, the newline character is
set to \r\n; otherwise, it’s set to \n, which is the newline character for Unix and
Macintosh.

Note This code is needed only for JavaScript 1.0. JavaScript versions 1.1 and later
check for all newline characters before setting a string-valued property and
translate them as needed for the user’s platform.

<SCRIPT>
var newline=null
function populate(textareaObject){

if (navigator.appVersion.lastIndexOf('Win') != -1)
newline="\r\n"
else newline="\n"

textareaObject.value="line 1" + newline + "line 2" + newline
+ "line 3"

}
</SCRIPT>
<FORM NAME="form1">

<TEXTAREA NAME="testLines" ROWS=8 COLS=55></TEXTAREA>
<P><INPUT TYPE="button" VALUE="Populate the Textarea object"

onClick="populate(document.form1.testLines)">
</TEXTAREA>
</FORM>
Chapter 1, Objects, Methods, and Properties 295

navigator.javaEnabled
javaEnabled .

Tests whether Java is enabled.

Syntax javaEnabled()

Parameters None.

Description javaEnabled returns true if Java is enabled; otherwise, false. The user can
enable or disable Java by through user preferences.

Examples The following code executes function1 if Java is enabled; otherwise, it
executes function2 .

if (navigator.javaEnabled()) {
function1()

}
else function2()

See also navigator.appCodeName , navigator.appName ,
navigator.userAgent

language .

Indicates the translation of the Navigator being used.

Description The value for language is usually a 2-letter code, such as "en" and occasionally
a five-character code to indicate a language subtype, such as "zh_CN".

Use this property to determine the language of the Navigator client software
being used. For example you might want to display translated text for the user.

Method of navigator

Static

Implemented in JavaScript 1.1

Property of navigator

Read-only

Implemented in JavaScript 1.2
296 Client-Side JavaScript Reference

navigator.mimeTypes
mimeTypes .

An array of all MIME types supported by the client.

The mimeTypes array contains an entry for each MIME type supported by the
client (either internally, via helper applications, or by plug-ins). For example, if
a client supports three MIME types, these MIME types are reflected as
navigator.mimeTypes[0] , navigator.mimeTypes[1] , and
navigator.mimeTypes[2] .

Each element of the mimeTypes array is a MimeType object.

To obtain the number of supported mime types, use the length property:
navigator.mimeTypes.length .

See also MimeType

platform .

Indicates the machine type for which the Navigator was compiled.

Description Platform values are Win32, Win16, Mac68k, MacPPC and various Unix.

The machine type the Navigator was compiled for may differ from the actual
machine type due to version differences, emulators, or other reasons.

If you use SmartUpdate to download software to a user’s machine, you can use
this property to ensure that the trigger downloads the appropriate JAR files. The
triggering page checks the Navigator version before checking the platform
property. For information on using SmartUpdate, see Using JAR Installation
Manager for SmartUpdate.

Property of navigator

Read-only

Implemented in JavaScript 1.1

Property of navigator

Read-only

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 297

navigator.plugins
plugins .

An array of all plug-ins currently installed on the client.

You can refer to the Plugin objects installed on the client by using this array.
Each element of the plugins array is a Plugin object. For example, if three
plug-ins are installed on the client, these plug-ins are reflected as
navigator.plugins[0] , navigator.plugins[1] , and
navigator.plugins[2] .

To use the plugins array:

1. navigator.plugins[index]
2. navigator.plugins[index][mimeTypeIndex]

index is an integer representing a plug-in installed on the client or a string
containing the name of a Plugin object (from the name property). The first
form returns the Plugin object stored at the specified location in the plugins
array. The second form returns the MimeType object at the specified index in
that Plugin object.

To obtain the number of plug-ins installed on the client, use the length
property: navigator.plugins.length .

plugins.refresh. The plugins array has its own method, refresh . This
method makes newly installed plug-ins available, updates related arrays such as
the plugins array, and optionally reloads open documents that contain plug-
ins. You call this method with one of the following statements:

navigator.plugins.refresh(true)
navigator.plugins.refresh(false)

If you supply true, refresh refreshes the plugins array to make newly
installed plug-ins available and reloads all open documents that contain
embedded objects (EMBED tag). If you supply false, it refreshes the plugins
array, but does not reload open documents.

When the user installs a plug-in, that plug-in is not available until refresh is
called or the user closes and restarts Navigator.

Property of navigator

Read-only

Implemented in JavaScript 1.1
298 Client-Side JavaScript Reference

navigator.preference
Examples The following code refreshes arrays and reloads open documents containing
embedded objects:

navigator.plugins.refresh(true)

See also the examples for the Plugin object.

preference .

Allows a signed script to get and set certain Navigator preferences.

Syntax preference(prefName [, setValue])

Parameters

Description This method returns the value of the preference. If you use the method to set
the value, it returns the new value.

With permission, you can get and set the preferences shown in the following
table.

Method of navigator

Static

Implemented in JavaScript 1.2

prefName A string representing the name of the preference you want to get or
set. Allowed preferences are listed below.

setValue The value you want to assign to the preference. This can be a
string, number, or Boolean.

Table 1.2 Preferences.

To do this... Set this preference... To this value...

Automatically load images general.always_load_images true or false

Enable Java security.enable_java true or false

Enable JavaScript javascript.enabled true or false

Enable style sheets browser.enable_style_sheets true or false

Enable SmartUpdate autoupdate.enabled true or false

Accept all cookies network.cookie.cookieBehavior 0
Chapter 1, Objects, Methods, and Properties 299

navigator.savePreferences
Security Reading a preference with the preference method requires the
UniversalPreferencesRead privilege. Setting a preference with this method
requires the UniversalPreferencesWrite privilege. For information on
security, see the Client-Side JavaScript Guide.

See also savePreferences

savePreferences .

Saves the Navigator preferences to the local file prefs.js .

Security Saving user preferences requires the UniversalPreferencesWrite privilege.
For information on security, see the Client-Side JavaScript Guide.

Syntax SavePreferences()

Description This method immediately saves the current Navigator preferences to the user’s
prefs.js settings file. Navigator also saves preferences automatically when it
exits.

See also preference

Accept only cookies that
get sent back to the
originating server

network.cookie.cookieBehavior 1

Disable cookies network.cookie.cookieBehavior 2

Warn before accepting
cookie

network.cookie.warnAboutCookies true or false

Table 1.2 Preferences. (Continued)

To do this... Set this preference... To this value...

Method of navigator

Static

Implemented in JavaScript 1.2
300 Client-Side JavaScript Reference

navigator.taintEnabled
taintEnabled .

Specifies whether data tainting is enabled.

Syntax navigator.taintEnabled()

Description Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user's permission.

Use taintEnabled to determine if data tainting is enabled. taintEnabled
returns true if data tainting is enabled, false otherwise. The user enables or
disables data tainting by using the environment variable NS_ENABLE_TAINT.

Examples The following code executes function1 if data tainting is enabled; otherwise it
executes function2.

if (navigator.taintEnabled()) {
function1()
}

else function2()

See also taint , untaint

Method of navigator

Static

Implemented in JavaScript 1.1

JavaScript 1.2: removed
Chapter 1, Objects, Methods, and Properties 301

navigator.userAgent
userAgent .

A string representing the value of the user-agent header sent in the HTTP
protocol from client to server.

Description Servers use the value sent in the user-agent header to identify the client.

Examples The following example displays userAgent information for the Navigator:

document.write("The value of navigator.userAgent is " +
navigator.userAgent)

For Navigator 2.0, this displays the following:

The value of navigator.userAgent is Mozilla/2.0 (Win16; I)

Property of navigator

Read-only

Implemented in JavaScript 1.0
302 Client-Side JavaScript Reference

Chapter 1, Objects, Methods, and Properties 303

netscape

netscape
A top-level object used to access any Java class in the package netscape.* .

Created by The netscape object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The netscape object is a convenience synonym for the property
Packages.netscape .

See also Packages , Packages.netscape

Core object

Implemented in JavaScript 1.1, NES 2.0

Number
Number
Lets you work with numeric values. The Number object is an object wrapper for
primitive numeric values.

Created by The Number constructor:

new Number(value)

Parameters

Description The primary uses for the Number object are:

• To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

• To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual
Number objects.

JavaScript 1.2: Number(x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");

prints NaN

You can convert any object to a number using the top-level Number function.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior of Number constructor

JavaScript 1.3: added toSource method

ECMA version ECMA-262

value The numeric value of the object being created.
304 Client-Side JavaScript Reference

Number
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example uses the Number object’s properties to
assign values to several numeric variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

Property Description

constructor Specifies the function that creates an object’s prototype.

MAX_VALUE The largest representable number.

MIN_VALUE The smallest representable number.

NaN Special “not a number” value.

NEGATIVE_INFINITY Special value representing negative infinity; returned on
overflow.

POSITIVE_INFINITY Special value representing infinity; returned on overflow.

prototype Allows the addition of properties to a Number object.

Method Description

toSource Returns an object literal representing the specified Number object;
you can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of the specified object. Overrides the
Object.valueOf method.
Chapter 1, Objects, Methods, and Properties 305

Number.constructor
Example 2. The following example creates a Number object, myNum, then adds
a description property to all Number objects. Then a value is assigned to the
myNum object’s description property.

myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

MAX_VALUE .

The maximum numeric value representable in JavaScript.

Description The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "Infinity" .

Because MAX_VALUE is a static property of Number, you always use it as
Number.MAX_VALUE, rather than as a property of a Number object you created.

Examples The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 * num2 <= Number.MAX_VALUE)
func1()

else
func2()

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
306 Client-Side JavaScript Reference

Number.MIN_VALUE
MIN_VALUE .

The smallest positive numeric value representable in JavaScript.

Description The MIN_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

MIN_VALUE has a value of approximately 5e-324. Values smaller than
MIN_VALUE (“underflow values”) are converted to 0.

Because MIN_VALUE is a static property of Number, you always use it as
Number.MIN_VALUE, rather than as a property of a Number object you created.

Examples The following code divides two numeric values. If the result is greater than or
equal to MIN_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 / num2 >= Number.MIN_VALUE)
func1()

else
func2()

NaN .

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Number

 Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 307

Number.NEGATIVE_INFINITY
Description JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN . Use the
isNaN function instead.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

Examples In the following example, if month has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (mont h < 1 || month > 12) {

month = Number.NaN
alert("Month must be between 1 and 12.")

}

See also NaN, isNaN , parseFloat , parseInt

NEGATIVE_INFINITY .

A special numeric value representing negative infinity. This value is represented
as the unquoted literal "-Infinity" .

Description This value behaves slightly differently than mathematical infinity:

• Any positive value, including POSITIVE_INFINITY , multiplied by
NEGATIVE_INFINITY is NEGATIVE_INFINITY .

• Any negative value, including NEGATIVE_INFINITY , multiplied by
NEGATIVE_INFINITY is POSITIVE_INFINITY .

• Zero multiplied by NEGATIVE_INFINITY is NaN.

• NaN multiplied by NEGATIVE_INFINITY is NaN.

• NEGATIVE_INFINITY , divided by any negative value except
NEGATIVE_INFINITY , is POSITIVE_INFINITY .

• NEGATIVE_INFINITY , divided by any positive value except
POSITIVE_INFINITY , is NEGATIVE_INFINITY .

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
308 Client-Side JavaScript Reference

Number.POSITIVE_INFINITY
• NEGATIVE_INFINITY , divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY , is NaN.

• Any number divided by NEGATIVE_INFINITY is Zero.

Because NEGATIVE_INFINITY is a static property of Number, you always use it
as Number.NEGATIVE_INFINITY , rather than as a property of a Number object
you created.

Examples In the following example, the variable smallNumber is assigned a value that is
smaller than the minimum value. When the if statement executes,
smallNumber has the value "-Infinity" , so the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)

func1()
else

func2()

See also Infinity , isFinite

POSITIVE_INFINITY .

A special numeric value representing infinity. This value is represented as the
unquoted literal "Infinity" .

Description This value behaves slightly differently than mathematical infinity:

• Any positive value, including POSITIVE_INFINITY , multiplied by
POSITIVE_INFINITY is POSITIVE_INFINITY .

• Any negative value, including NEGATIVE_INFINITY , multiplied by
POSITIVE_INFINITY is NEGATIVE_INFINITY .

• Zero multiplied by POSITIVE_INFINITY is NaN.

• NaN multiplied by POSITIVE_INFINITY is NaN.

• POSITIVE_INFINITY , divided by any negative value except
NEGATIVE_INFINITY , is NEGATIVE_INFINITY .

• POSITIVE_INFINITY , divided by any positive value except
POSITIVE_INFINITY , is POSITIVE_INFINITY .

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 309

Number.prototype
• POSITIVE_INFINITY , divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY , is NaN.

• Any number divided by POSITIVE_INFINITY is Zero.

Because POSITIVE_INFINITY is a static property of Number, you always use it
as Number.POSITIVE_INFINITY , rather than as a property of a Number object
you created.

Examples In the following example, the variable bigNumber is assigned a value that is
larger than the maximum value. When the if statement executes, bigNumber
has the value "Infinity" , so the func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)

func1()
else

func2()

See also Infinity , isFinite

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Number

Implemented in JavaScript 1.3
310 Client-Side JavaScript Reference

Number.toString
Description The toSource method returns the following values:

• For the built-in Number object, toSource returns the following string
indicating that the source code is not available:

function Number() {
[native code]

}

• For instances of Number, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

toString .

Returns a string representing the specified Number object.

Syntax toString()
toString([radix])

Parameters

Description The Number object overrides the toString method of the Object object; it
does not inherit Object.toString . For Number objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a number is to be
represented as a text value or when a number is referred to in a string
concatenation.

For Number objects and values, the built-in toString method returns the string
representing the value of the number.

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262

radix An integer between 2 and 36 specifying the base to use for representing
numeric values.
Chapter 1, Objects, Methods, and Properties 311

Number.valueOf
You can use toString on numeric values, but not on numeric literals:

// The next two lines are valid
var howMany=10
alert("howMany.toString() i s " + howMany.toString())

// The next line causes an error
alert("45.toString() i s " + 45.toString())

valueOf .

Returns the primitive value of a Number object.

Syntax valueOf()

Parameters None

Description The valueOf method of Number returns the primitive value of a Number
object as a number data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Number();
alert(x.valueOf()) //displays 0

See also Object.valueOf

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262
312 Client-Side JavaScript Reference

Object
Object
Object is the primitive JavaScript object type. All JavaScript objects are
descended from Object . That is, all JavaScript objects have the methods
defined for Object .

Created by The Object constructor:

new Object()

Parameters None

Property
Summary

Method Summary

Core object

Implemented in JavaScript 1.0: toString method

JavaScript 1.1, NES 2.0: added eval and valueOf methods;
constructor property

JavaScript 1.2: deprecated eval method

JavaScript 1.3: added toSource method

ECMA version ECMA-262

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to all objects.

Method Description

eval Deprecated. Evaluates a string of JavaScript code in the context of
the specified object.

toSource Returns an object literal representing the specified object; you can
use this value to create a new object.

toString Returns a string representing the specified object.

unwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.
Chapter 1, Objects, Methods, and Properties 313

Object.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description All objects inherit a constructor property from their prototype :

o = new Object // o r o = {} in JavaScript 1.2
o.constructor == Object
a = new Array // o r a = [] in JavaScript 1.2
a.constructor == Array
n = new Number(3)
n.constructor == Number

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

document.constructor == Document
document.form3.constructor == Form

Examples The following example creates a prototype, Tree , and an object of that type,
theTree . The example then displays the constructor property for the object
theTree .

function Tree(name) {
this.name=name

}
theTree = new Tree("Redwood")
document.writeln("theTree.constructor is " +

theTree.constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

Property of Object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
314 Client-Side JavaScript Reference

Object.eval
eval .

Deprecated. Evaluates a string of JavaScript code in the context of an object.

Syntax eval(string)

Parameters

Description eval as a method of Object and every object derived from Object is
deprecated. Use the top-level eval function.

Backward
Compatibility

JavaScript 1.1. eval is a method of Object and every object derived from
Object.

See also eval

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Function.prototype .

Method of Object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects; retained as
top-level function

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

Property of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 315

Object.toSource
toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Object object, toSource returns the following string
indicating that the source code is not available:

function Object() {
[native code]

}

• For instances of Object , toSource returns a string representing the
source code.

• For custom objects, toSource returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.

Examples The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate","girl")

Calling the toSource method of theDog displays the JavaScript source that
defines the object:

theDog.toSource()
//returns "{name:"Gabby", breed:"Lab", color:"chocolate", sex:"girl"}

See also Object.toString

Method of Object

Implemented in JavaScript 1.3
316 Client-Side JavaScript Reference

Object.toString
toString .

Returns a string representing the specified object.

Syntax toString()

Security JavaScript 1.1: This method is tainted by default for the following objects:
Button , Checkbox , FileUpload , Hidden , History , Link , Location ,
Password , Radio , Reset , Select , Submit , Text , and Textarea . For
information on data tainting, see the Client-Side JavaScript Guide.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require theDog to be
represented as a string:

document.write(theDog)
document.write("The dog i s " + theDog)

By default, the toString method is inherited by every object descended from
Object . You can override this method for custom objects that you create. If
you do not override toString in a custom object, toString returns
[object type] , where type is the object type or the name of the constructor
function that created the object.

For example:

var o = new Object()
o.toString // returns [object Object]

Built-in toString methods. Every built-in core JavaScript object overrides the
toString method of Object to return an appropriate value. JavaScript calls
this method whenever it needs to convert an object to a string.

Some built-in client-side and server-side JavaScript objects do not override the
toString method of Object. For example, for an Image object named sealife
defined as shown below, sealife.toString() returns [object Image] .

Method of Object

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 317

Object.toString
Overriding the default toString method. You can create a function to be
called in place of the default toString method. The toString method takes
no arguments and should return a string. The toString method you create can
be any value you want, but it will be most useful if it carries information about
the object.

The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

If you call the toString method on this custom object, it returns the default
value inherited from Object :

theDog.toString() //returns [object Object]

The following code creates dogToString, the function that will be used to
override the default toString method. This function generates a string
containing each property, of the form "property = value;" .

function dogToString() {
var ret = "Dog " + this.nam e + " is [\n"
for (var prop in this)

ret += " " + prop + " is " + this[prop] + ";\n"
return ret + "]"

}

The following code assigns the user-defined function to the object’s toString
method:

Dog.prototype.toString = dogToString

With the preceding code in place, any time theDog is used in a string context,
JavaScript automatically calls the dogToString function, which returns the
following string:

Dog Gabby is [
name is Gabby;
breed is Lab;
color is chocolate;
sex is girl;

]

318 Client-Side JavaScript Reference

Object.toString
An object’s toString method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

var dogString = theDog.toString()

Backward
Compatibility

JavaScript 1.2. The behavior of the toString method depends on whether
you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, the
toString method returns an object literal.

• If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, the toString method returns [object type] , as with other
JavaScript versions.

Examples Example 1: The location object. The following example prints the string
equivalent of the current location.

document.write("location.toString() is " + location.toString() + "
")

The output is as follows:

location.toString() is file:///C|/TEMP/myprog.html

Example 2: Object with no string value. Assume you have an Image object
named sealife defined as follows:

Because the Image object itself has no special toString method,
sealife.toString() returns the following:

[object Image]

Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
document.write("Decimal: ", x.toString(10), " Binary: ",

x.toString(2), "
")
}

Chapter 1, Objects, Methods, and Properties 319

Object.unwatch
The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

See also Object.toSource , Object.valueOf

unwatch .

Removes a watchpoint set with the watch method.

Syntax unwatch(prop)

Parameters

Description The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

By default, this method is inherited by every object descended from Object .

Example See watch .

Method of Object

Implemented in JavaScript 1.2, NES 3.0

prop The name of a property of the object.
320 Client-Side JavaScript Reference

Object.valueOf
valueOf .

Returns the primitive value of the specified object.

Syntax valueOf()

Parameters None

Description JavaScript calls the valueOf method to convert an object to a primitive value.
You rarely need to invoke the valueOf method yourself; JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

By default, the valueOf method is inherited by every object descended from
Object . Every built-in core object overrides this method to return an
appropriate value. If an object has no primitive value, valueOf returns the
object itself, which is displayed as:

[object Object]

You can use valueOf within your own code to convert a built-in object into a
primitive value. When you create a custom object, you can override
Object.valueOf to call a custom method instead of the default Object
method.

Overriding valueOf for custom objects. You can create a function to be
called in place of the default valueOf method. Your function must take no
arguments.

Suppose you have an object type myNumberType and you want to create a
valueOf method for it. The following code assigns a user-defined function to
the object’s valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is
used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

Method of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 321

Object.watch
An object’s valueOf method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNumber.valueOf()

Note Objects in string contexts convert via the toString method, which is different
from String objects converting to string primitives using valueOf . All string
objects have a string conversion, if only "[object type]" . But many objects
do not convert to number, boolean, or function.

See also parseInt , Object.toString

watch .

Watches for a property to be assigned a value and runs a function when that
occurs.

Syntax watch(prop , handler)

Parameters

Description Watches for assignment to a property named prop in this object, calling
handler(prop, oldval, newval) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwatch method. By default, the watch
method is inherited by every object descended from Object .

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

Method of Object

Implemented in JavaScript 1.2, NES 3.0

prop The name of a property of the object.

handler A function to call.
322 Client-Side JavaScript Reference

Object.watch
Example <script language="JavaScript1.2">
o = {p:1}
o.watch("p",

function (id,oldval,newval) {
document.writeln("o." + i d + " changed from "

+ oldva l + " to " + newval)
return newval

})

o.p = 2
o.p = 3
delete o.p
o.p = 4

o.unwatch('p')
o.p = 5

</script>

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4
Chapter 1, Objects, Methods, and Properties 323

Option
Option
An option in a selection list.

Created by The Option constructor or the HTML OPTION tag. To create an Option object
with its constructor:

new Option([text [, value [, defaultSelected [, selected]]]])

Once you’ve created an Option object, you can add it to a selection list using
the Select.options array.

Parameters

Property
Summary

Method Summary This object inherits the watch and unwatch methods from Object .

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added defaultSelected property; text property
can be changed to change the text of an option

text Specifies the text to display in the select list.

value Specifies a value that is returned to the server when the option is
selected and the form is submitted.

defaultSelected Specifies whether the option is initially selected (true or false).

selected Specifies the current selection state of the option (true or false).

Property Description

defaultSelected Specifies the initial selection state of the option

index The zero-based index of an element in the
Select.options array.

length The number of elements in the Select.options array.

selected Specifies the current selection state of the option

text Specifies the text for the option

value Specifies the value that is returned to the server when the
option is selected and the form is submitted
324 Client-Side JavaScript Reference

Option
Description Usually you work with Option objects in the context of a selection list (a
Select object). When JavaScript creates a Select object for each SELECT tag
in the document, it creates Option objects for the OPTION tags inside the
SELECT tag and puts those objects in the options array of the Select object.

In addition, you can create new options using the Option constructor and add
those to a selection list. After you create an option and add it to the Select
object, you must refresh the document by using history.go(0) . This
statement must be last. When the document reloads, variables are lost if not
saved in cookies or form element values.

You can use the Option.selected and Select.selectedIndex
properties to change the selection state of an option.

• The Select.selectedIndex property is an integer specifying the index
of the selected option. This is most useful for Select objects that are
created without the MULTIPLE attribute. The following statement sets a
Select object’s selectedIndex property:

document.myForm.musicTypes.selectedIndex = i

• The Option.selected property is a Boolean value specifying the current
selection state of the option in a Select object. If an option is selected, its
selected property is true; otherwise it is false. This is more useful for
Select objects that are created with the MULTIPLE attribute. The following
statement sets an option’s selected property to true:

document.myForm.musicTypes.options[i].selected = true

To change an option’s text, use is Option.text property. For example,
suppose a form has the following Select object:

<SELECT name="userChoice">
<OPTION>Choice 1
<OPTION>Choice 2
<OPTION>Choice 3

</SELECT>

You can set the text of the i th item in the selection based on text entered in a
text field named whatsNew as follows:

myform.userChoice.options[i].text = myform.whatsNew.value

You do not need to reload or refresh after changing an option’s text.
Chapter 1, Objects, Methods, and Properties 325

Option
Examples The following example creates two Select objects, one with and one without
the MULTIPLE attribute. No options are initially defined for either object. When
the user clicks a button associated with the Select object, the populate
function creates four options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {

colorArray = new Array("Red", "Blue", "Yellow", "Green")

var option0 = new Option("Red", "color_red")
var option1 = new Option("Blue", "color_blue")
var option2 = new Option("Yellow", "color_yellow")
var option3 = new Option("Green", "color_green")

for (var i=0; i < 4; i++) {
eval("inForm.selectTest.options[i]=option" + i)
if (i==0) {

inForm.selectTest.options[i].selected=true
}

}

history.go(0)
}
</SCRIPT>

<H3>Select Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest"></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<P>
</FORM>

<HR>
<H3>Select-Multiple Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest" multiple></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</FORM>
326 Client-Side JavaScript Reference

Option.defaultSelected
defaultSelected .

A Boolean value indicating the default selection state of an option in a selection
list.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If an option is selected by default, the value of the defaultSelected property
is true; otherwise, it is false. defaultSelected initially reflects whether the
SELECTED attribute is used within an OPTION tag; however, setting
defaultSelected overrides the SELECTED attribute.

You can set the defaultSelected property at any time. The display of the
corresponding Select object does not update when you set the
defaultSelected property of an option, only when you set the
Option.selected or Select.selectedIndex properties.

A Select object created without the MULTIPLE attribute can have only one
option selected by default. When you set defaultSelected in such an object,
any previous default selections, including defaults set with the SELECTED
attribute, are cleared. If you set defaultSelected in a Select object created
with the MULTIPLE attribute, previous default selections are not affected.

Examples In the following example, the restoreDefault function returns the
musicType Select object to its default state. The for loop uses the options
array to evaluate every option in the Select object. The if statement sets the
selected property if defaultSelected is true.

function restoreDefault() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].defaultSelected == true) {
document.musicForm.musicType.options[i].selected=true

}
}

}

Property of Option

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 327

Option.index
The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

See also Option.selected , Select.selectedIndex

index .

The zero-based index of an element in the Select.options array.

Description The index property specifies the position of an element in the
Select.options array, starting with 0.

Examples In the following example, the getChoice function returns the value of the
index property for the selected option. The for loop evaluates every option in
the musicType Select object. The if statement finds the option that is
selected.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].index

}
}
return null

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

Property of Option

Implemented in JavaScript 1.0
328 Client-Side JavaScript Reference

Option.length
Note that you can also determine the index of the selected option in this
example by using document.musicForm.musicType.selectedIndex.

length .

The number of elements in the Select.options array.

Description This value of this property is the same as the value of Select.length .

Examples See Option.index for an example of the length property.

selected .

A Boolean value indicating whether an option in a Select object is selected.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If an option in a Select object is selected, the value of its selected property
is true; otherwise, it is false. You can set the selected property at any time.
The display of the associated Select object updates immediately when you
set the selected property for one of its options.

In general, the Option.selected property is more useful than the
Select.selectedIndex property for Select objects that are created with
the MULTIPLE attribute. With the Option.selected property, you can
evaluate every option in the Select.options array to determine multiple
selections, and you can select individual options without clearing the selection
of other options.

Examples See the examples for defaultSelected .

See also Option.defaultSelected , Select.selectedIndex

Property of Option

Read-only

Implemented in JavaScript 1.0

Property of Option

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 329

Option.text
text .

A string specifying the text of an option in a selection list.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The text property initially reflects the text that follows an OPTION tag of a
SELECT tag. You can set the text property at any time and the text displayed
by the option in the selection list changes.

Examples Example 1. In the following example, the getChoice function returns the
value of the text property for the selected option. The for loop evaluates
every option in the musicType Select object. The if statement finds the
option that is selected.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}
}
return null

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

Property of Option

Implemented in JavaScript 1.0

JavaScript 1.1: The text property can be changed to updated the
selection option. In previous releases, you could set the text
property but the new value was not reflected in the Select object.
330 Client-Side JavaScript Reference

Option.text
Example 2. In the following form, the user can enter some text in the first text
field and then enter a number between 0 and 2 (inclusive) in the second text
field. When the user clicks the button, the text is substituted for the indicated
option number and that option is selected.

The code for this example looks as follows:

<SCRIPT>
function updateList(theForm, i) {

theForm.userChoice.options[i].text = theForm.whatsNew.value
theForm.userChoice.options[i].selected = true

}
</SCRIPT>
<FORM>
<SELECT name="userChoice">

<OPTION>Choice 1
<OPTION>Choice 2
<OPTION>Choice 3

</SELECT>

New text for the option: <INPUT TYPE="text" NAME="whatsNew">

Option to change (0, 1, or 2): <INPUT TYPE="text" NAME="idx">

<INPUT TYPE="button" VALUE="Change Selection"
onClick="updateList(this.form, this.form.idx.value)">
</FORM>
Chapter 1, Objects, Methods, and Properties 331

Option.value
value .

A string that reflects the VALUE attribute of the option.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description When a VALUE attribute is specified in HTML, the value property is a string that
reflects it. When a VALUE attribute is not specified in HTML, the value property
is the empty string. The value property is not displayed on the screen but is
returned to the server if the option is selected.

Do not confuse the property with the selection state of the option or the text
that is displayed next to it. The selected property determines the selection
state of the object, and the defaultSelected property determines the
default selection state. The text that is displayed is specified following the
OPTION tag and corresponds to the text property.

Property of Option

Read-only

Implemented in JavaScript 1.0
332 Client-Side JavaScript Reference

Packages
Packages
A top-level object used to access Java classes from within JavaScript code.

Created by The Packages object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The Packages object lets you access the public methods and fields of an
arbitrary Java class from within JavaScript. The java , netscape , and sun
properties represent the packages java.*, netscape.*, and sun.* respectively. Use
standard Java dot notation to access the classes, methods, and fields in these
packages. For example, you can access a constructor of the Frame class as
follows:

var theFrame = new Packages.java.awt.Frame();

For convenience, JavaScript provides the top-level netscape , sun , and java
objects that are synonyms for the Packages properties with the same names.
Consequently, you can access Java classes in these packages without the
Packages keyword, as follows:

var theFrame = new java.awt.Frame();

The className property represents the fully qualified path name of any other
Java class that is available to JavaScript. You must use the Packages object to
access classes outside the netscape , sun , and java packages.

Property
Summary

Core object

Implemented in JavaScript 1.1, NES 2.0

Property Description

className The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

java Any class in the Java package java.*.

netscape Any class in the Java package netscape.*.

sun Any class in the Java package sun.*.
Chapter 1, Objects, Methods, and Properties 333

Packages.className
Examples The following JavaScript function creates a Java dialog box:

function createWindow() {
var theOwner = new Packages.java.awt.Frame();
var theWindow = new Packages.java.awt.Dialog(theOwner);
theWindow.setSize(350,200);
theWindow.setTitle("Hello, World");
theWindow.setVisible(true);

}

In the previous example, the function instantiates theWindow as a new
Packages object. The setSize , setTitle , and setVisible methods are
all available to JavaScript as public methods of java.awt.Dialog .

className .

The fully qualified name of a Java class in a package other than netscape ,
java , or sun that is available to JavaScript.

Syntax Packages. className

where classname is the fully qualified name of a Java class.

Description You must use the className property of the Packages object to access
classes outside the netscape , sun , and java packages.

Examples The following code accesses the constructor of the CorbaObject class in the
myCompany package from JavaScript:

var theObject = new Packages.myCompany.CorbaObject()

In the previous example, the value of the className property is
myCompany.CorbaObject, the fully qualified path name of the
CorbaObject class.

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
334 Client-Side JavaScript Reference

Packages.java
java .

Any class in the Java package java.* .

Syntax Packages.java

Description Use the java property to access any class in the java package from within
JavaScript. Note that the top-level object java is a synonym for
Packages.java .

Examples The following code accesses the constructor of the java.awt.Frame class:

var theOwner = new Packages.java.awt.Frame();

You can simplify this code by using the top-level java object to access the
constructor as follows:

var theOwner = new java.awt.Frame();

netscape .

Any class in the Java package netscape.* .

Syntax Packages.netscape

Description Use the netscape property to access any class in the netscape package
from within JavaScript. Note that the top-level object netscape is a synonym
for Packages.netscape .

Examples See the example for .Packages.java

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
Chapter 1, Objects, Methods, and Properties 335

Packages.sun
sun .

Any class in the Java package sun.* .

Syntax Packages.sun

Description Use the sun property to access any class in the sun package from within
JavaScript. Note that the top-level object sun is a synonym for
Packages.sun .

Examples See the example for .Packages.java

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
336 Client-Side JavaScript Reference

Password
Password
A text field on an HTML form that conceals its value by displaying asterisks (*).
When the user enters text into the field, asterisks (*) hide entries from view.

Created by The HTML INPUT tag, with "password" as the value of the TYPE attribute. For
a given form, the JavaScript runtime engine creates appropriate Password
objects and puts these objects in the elements array of the corresponding
Form object. You access a Password object by indexing this array. You can
index the array either by number or, if supplied, by using the value of the NAME
attribute.

Event handlers • onBlur

• onFocus

Description A Password object on a form looks as follows:

A Password object is a form element and must be defined within a FORM tag.

Security JavaScript versions 1.2 and later. The value property is returned in plain
text and has no security associated with it. Take care when using this property,
and avoid storing its value in a cookie.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers

JavaScript 1.2: added handleEvent method.
Chapter 1, Objects, Methods, and Properties 337

Password
JavaScript 1.1. If a user interactively modifies the value in a password field,
you cannot evaluate it accurately unless data tainting is enabled. For
information on data tainting, see the Client-Side JavaScript Guide.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples The following example creates a Password object with no default value:

Password:
<INPUT TYPE="password" NAME="password" VALUE="" SIZE=25>

See also Form, Text

Property Description

defaultValue Reflects the VALUE attribute.

form Specifies the form containing the Password object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Password object’s field.

Method Description

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the object.
338 Client-Side JavaScript Reference

Password.blur
blur .

Removes focus from the object.

Syntax blur()

Parameters None

Examples The following example removes focus from the password element userPass:

userPass.blur()

This example assumes that the password is defined as

<INPUT TYPE="password" NAME="userPass">

See also Password.focus , Password.select

defaultValue .

A string indicating the default value of a Password object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The initial value of defaultValue is null (for security reasons), regardless of
the value of the VALUE attribute.

Setting defaultValue programmatically overrides the initial setting. If you
programmatically set defaultValue for the Password object and then evaluate
it, JavaScript returns the current value.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

See also Password.value

Method of Password

Implemented in JavaScript 1.0

Property of Password

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 339

Password.focus
focus .

Gives focus to the password object.

Syntax focus()

Parameters None

Description Use the focus method to navigate to the password field and give it focus. You
can then either programmatically enter a value in the field or let the user enter
a value.

Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the focus method
returns focus to the Password object and the select method highlights it so
the user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {

alert("Please enter your password again.")
userPass.focus()
userPass.select()

}
}

This example assumes that the Password object is defined as

<INPUT TYPE="password" NAME="userPass">

See also Password.blur , Password.select

form .

An object reference specifying the form containing this object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Method of Password

Implemented in JavaScript 1.0

Property of Password

Read-only

Implemented in JavaScript 1.0
340 Client-Side JavaScript Reference

Password.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

name .

A string specifying the name of this object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Password element on the same
form have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Method of Password

Implemented in JavaScript 1.2

event The name of an event for which the object has an event handler.

Property of Password

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 341

Password.select
Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

select .

Selects the input area of the password field.

Syntax select()

Parameters None

Description Use the select method to highlight the input area of the password field. You
can use the select method with the focus method to highlight a field and
position the cursor for a user response.

Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the select method
highlights the password field and the focus method returns focus to it so the
user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {

alert("Please enter your password again.")
userPass.focus()
userPass.select()

}
}

This example assumes that the password is defined as

<INPUT TYPE="password" NAME="userPass">

See also Password.blur , Password.focus

Method of Password

Implemented in JavaScript 1.0
342 Client-Side JavaScript Reference

Password.type
type .

For all Password objects, the value of the type property is "password" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that initially reflects the VALUE attribute.

Security JavaScript versions 1.2 and later. This property is returned in plain text and
has no security associated with it. Take care when using this property, and
avoid storing its value in a cookie.

JavaScript 1.1. This property is tainted by default. If you programmatically set
the value property and then evaluate it, JavaScript returns the current value. If
a user interactively modifies the value in the password field, you cannot
evaluate it accurately unless data tainting is enabled. For information on data
tainting, see the Client-Side JavaScript Guide.

Description This string is represented by asterisks in the Password object field. The value of
this property changes when a user or a program modifies the field, but the
value is always displayed as asterisks.

See also Password.defaultValue

Property of Password

Read-only

Implemented in JavaScript 1.1

Property of Password

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 343

Plugin
Plugin
A plug-in module installed on the client.

Created by Plugin objects are predefined JavaScript objects that you access through the
navigator.plugins array.

Description A Plugin object is a plug-in installed on the client. A plug-in is a software
module that the browser can invoke to display specialized types of embedded
data within the browser. The user can obtain a list of installed plug-ins by
choosing About Plug-ins from the Help menu.

Each Plugin object is itself array containing one element for each MIME type
supported by the plug-in. Each element of the array is a MimeType object. For
example, the following code displays the type and description properties of
the first Plugin object’s first MimeType object.

myPlugin=navigator.plugins[0]
myMimeType=myPlugin[0]
document.writeln('myMimeType.type is ',myMimeType.type,"
")
document.writeln('myMimeType.description is ',myMimeType.description)

The preceding code displays output similar to the following:

myMimeType.type is video/quicktime
myMimeType.description is QuickTime for Windows

The Plugin object lets you dynamically determine which plug-ins are installed
on the client. You can write scripts to display embedded plug-in data if the
appropriate plug-in is installed, or display some alternative information such as
images or text if not.

Plug-ins can be platform dependent and configurable, so a Plugin object’s
array of MimeType objects can vary from platform to platform, and from user to
user.

Each Plugin object is an element in the plugins array.

When you use the EMBED tag to generate output from a plug-in application, you
are not creating a Plugin object. Use the document.embeds array to refer to
plug-in instances created with EMBED tags. See the document.embeds array.

Client-side object

Implemented in JavaScript 1.1
344 Client-Side JavaScript Reference

Plugin
Property
Summary

Method Summary This object inherits the watch and unwatch methods from Object .

Examples Example 1. The user can obtain a list of installed plug-ins by choosing About
Plug-ins from the Help menu. To see the code the browser uses for this report,
choose About Plug-ins from the Help menu, then choose Page Source from the
View menu.

Example 2. The following code assigns shorthand variables for the predefined
LiveAudio properties.

var myPluginName = navigator.plugins["LiveAudio"].name
var myPluginFile = navigator.plugins["LiveAudio"].filename
var myPluginDesc = navigator.plugins["LiveAudio"].description

Example 3. The following code displays the message “LiveAudio is configured
for audio/wav” if the LiveAudio plug-in is installed and is enabled for the
"audio/wav" MIME type:

var myPlugin = navigator.plugins["LiveAudio"]
var myType = myPlugin["audio/wav"]
if (myType && myType.enabledPlugin == myPlugin)

document.writeln("LiveAudio is configured for audio/wav")

Example 4. The following expression represents the number of MIME types
that Shockwave can display:

navigator.plugins["Shockwave"].length

Property Description

description A description of the plug-in.

filename Name of the plug-in file on disk.

length Number of elements in the plug-in’s array of MimeType objects.

name Name of the plug-in.
Chapter 1, Objects, Methods, and Properties 345

Plugin
Example 5. The following code displays the name, filename , description ,
and length properties for each Plugin object on a client:

document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
"<TH ALIGN=left>i",
"<TH ALIGN=left>name",
"<TH ALIGN=left>filename",
"<TH ALIGN=left>description",
"<TH ALIGN=left># of types</TR>")

for (i=0 ; i < navigator.plugins.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,

"<TD>",navigator.plugins[i].name,
"<TD>",navigator.plugins[i].filename,
"<TD>",navigator.plugins[i].description,
"<TD>",navigator.plugins[i].length,
"</TR>")

}
document.writeln("</TABLE>")

The preceding example displays output similar to the following:

See also MimeType , document.embeds

i name filename description # of types

0 QuickTime
Plug-In

d:\nettools\netscape\nav30\Program\
plugins\NPQTW32.DLL

QuickTime Plug-In for
Win32 v.1.0.0

1

1 LiveAudio d:\nettools\netscape\nav30\Program\
plugins\NPAUDIO.DLL

LiveAudio—Netscape
Navigator sound playing
component

7

2 NPAVI32
Dynamic
Link Library

d:\nettools\netscape\nav30\Program\
plugins\npavi32.dll

NPAVI32, avi plugin DLL 2

3 Netscape
Default
Plugin

d:\nettools\netscape\nav30\Program\
plugins\npnul32.dll

Null Plugin 1
346 Client-Side JavaScript Reference

Plugin.description
description .

A human-readable description of the plug-in. The text is provided by the plug-
in developers.

filename .

The name of a plug-in file on disk.

Description The filename property is the plug-in program’s file name and is supplied by
the plug-in itself. This name may vary from platform to platform.

Examples See the examples for Plugin .

length .

The number of elements in the plug-in’s array of MimeType objects.

Property of Plugin

Read-only

Implemented in JavaScript 1.1

Property of Plugin

Read-only

Implemented in JavaScript 1.1

Property of Plugin

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 347

Plugin.name
name .

A string specifying the plug-in’s name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The plug-in’s name, supplied by the plug-in itself. Each plug-in should have a
name that uniquely identifies it.

Property of Plugin

Read-only

Implemented in JavaScript 1.1
348 Client-Side JavaScript Reference

Radio
Radio
An individual radio button in a set of radio buttons on an HTML form. The user
can use a set of radio buttons to choose one item from a list.

Created by The HTML INPUT tag, with "radio" as the value of the TYPE attribute. All the
radio buttons in a single group must have the same value for the NAME attribute.
This allows them to be accessed as a single group.

For a given form, the JavaScript runtime engine creates an individual Radio
object for each radio button in that form. It puts in a single array all the Radio
objects that have the same value for the NAME attribute. It puts that array in the
elements array of the corresponding Form object. If a single form has
multiple sets of radio buttons, the elements array has multiple Radio objects.

You access a set of buttons by accessing the Form.elements array (either by
number or by using the value of the NAME attribute). To access the individual
radio buttons in that set, you use the returned object array. For example, if your
document has a form called emp with a set of radio buttons whose NAME
attribute is "dept" , you would access the individual buttons as
document.emp.dept[0] , document.emp.dept[1] , and so on.

Event handlers • onBlur

• onClick

• onFocus

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added blur and focus
methods.

JavaScript 1.2: added handleEvent method.
Chapter 1, Objects, Methods, and Properties 349

Radio
Description A Radio object on a form looks as follows:

A Radio object is a form element and must be defined within a FORM tag.

Property
Summary Property Description

checked Lets you programmatically select a radio button (property of the
individual button).

defaultChecked Reflects the CHECKED attribute (property of the individual
button).

form Specifies the form containing the Radio object (property of the
array of buttons).

name Reflects the NAME attribute (property of the array of buttons).

type Reflects the TYPE attribute (property of the array of buttons).

value Reflects the VALUE attribute (property of the array of buttons).
350 Client-Side JavaScript Reference

Radio
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example defines a radio button group to choose
among three music catalogs. Each radio button is given the same name,
NAME="musicChoice" , forming a group of buttons for which only one choice
can be selected. The example also defines a text field that defaults to what was
chosen via the radio buttons but that allows the user to type a nonstandard
catalog name as well. The onClick event handler sets the catalog name input
field when the user clicks a radio button.

<INPUT TYPE="text" NAME="catalog" SIZE="20">
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"

onClick="musicForm.catalog.value = 'soul-and-r&b'"> Soul and R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"

onClick="musicForm.catalog.value = 'jazz'"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"

onClick="musicForm.catalog.value = 'classical'"> Classical

Example 2. The following example contains a form with three text boxes and
three radio buttons. The radio buttons let the user choose whether the text
fields are converted to uppercase or lowercase, or not converted at all. Each
text field has an onChange event handler that converts the field value
depending on which radio button is checked. The radio buttons for uppercase
and lowercase have onClick event handlers that convert all fields when the
user clicks the radio button.

Method Description

blur Removes focus from the radio button.

click Simulates a mouse-click on the radio button.

focus Gives focus to the radio button.

handleEvent Invokes the handler for the specified event.
Chapter 1, Objects, Methods, and Properties 351

Radio
<HTML>
<HEAD>
<TITLE>Radio object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {

if (document.form1.conversion[0].checked) {
field.value = field.value.toUpperCase()}

else {
if (document.form1.conversion[1].checked) {

field.value = field.value.toLowerCase()}
}

}
function convertAllFields(caseChange) {

if (caseChange=="upper") {
document.form1.lastName.value = document.form1.lastName.value.toUpperCase()
document.form1.firstName.value = document.form1.firstName.value.toUpperCase()
document.form1.cityName.value = document.form1.cityName.value.toUpperCase()}
else {
document.form1.lastName.value = document.form1.lastName.value.toLowerCase()
document.form1.firstName.value = document.form1.firstName.value.toLowerCase()
document.form1.cityName.value = document.form1.cityName.value.toLowerCase()
}

}
</SCRIPT>
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P>Convert values to:

<INPUT TYPE="radio" NAME="conversion" VALUE="upper"

onClick="if (this.checked) {convertAllFields('upper')}"> Upper case

<INPUT TYPE="radio" NAME="conversion" VALUE="lower"

onClick="if (this.checked) {convertAllFields('lower')}"> Lower case

<INPUT TYPE="radio" NAME="conversion" VALUE="noChange"> No conversion
</FORM>
</BODY>
</HTML>

See also the example for Link .

See also Checkbox , Form , Select
352 Client-Side JavaScript Reference

Radio.blur
blur .

Removes focus from the radio button.

Syntax blur()

Parameters None

See also Radio.focus

checked .

A Boolean value specifying the selection state of a radio button.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If a radio button is selected, the value of its checked property is true;
otherwise, it is false. You can set the checked property at any time. The display
of the radio button updates immediately when you set the checked property.

At any given time, only one button in a set of radio buttons can be checked.
When you set the checked property for one radio button in a group to true,
that property for all other buttons in the group becomes false.

Examples The following example examines an array of radio buttons called musicType
on the musicForm form to determine which button is selected. The VALUE
attribute of the selected button is assigned to the checkedButton variable.

function stateChecker() {
var checkedButton = ""
for (var i in document.musicForm.musicType) {

if (document.musicForm.musicType[i].checked=="1") {
checkedButton=document.musicForm.musicType[i].value

}
}

}

See also Radio.defaultChecked

Method of Radio

Implemented in JavaScript 1.0

Property of Radio

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 353

Radio.click
click .

Simulates a mouse-click on the radio button, but does not trigger the button’s
onClick event handler.

Syntax click()

Parameters None

Examples The following example toggles the selection status of the first radio button in
the musicType Radio object on the musicForm form:

document.musicForm.musicType[0].click()

The following example toggles the selection status of the newAge checkbox on
the musicForm form:

document.musicForm.newAge.click()

defaultChecked .

A Boolean value indicating the default selection state of a radio button.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If a radio button is selected by default, the value of the defaultChecked
property is true; otherwise, it is false. defaultChecked initially reflects whether
the CHECKED attribute is used within an INPUT tag; however, setting
defaultChecked overrides the CHECKED attribute.

Unlike for the checked property, changing the value of defaultChecked for
one button in a radio group does not change its value for the other buttons in
the group.

You can set the defaultChecked property at any time. The display of the radio
button does not update when you set the defaultChecked property, only
when you set the checked property.

Method of Radio

Implemented in JavaScript 1.0

Property of Radio

Implemented in JavaScript 1.0
354 Client-Side JavaScript Reference

Radio.focus
Examples The following example resets an array of radio buttons called musicType on
the musicForm form to the default selection state:

function radioResetter() {
var i=""
for (i in document.musicForm.musicType) {

if (document.musicForm.musicType[i].defaultChecked==true) {
document.musicForm.musicType[i].checked=true

}
}

}

See also Radio.checked

focus .

Gives focus to the radio button.

Syntax focus()

Parameters None

Description Use the focus method to navigate to the radio button and give it focus. The
user can then easily toggle that button.

See also Radio.blur

form .

An object reference specifying the form containing the radio button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Method of Radio

Implemented in JavaScript 1.0

Property of Radio

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 355

Radio.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

name .

A string specifying the name of the set of radio buttons with which this button
is associated.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

All radio buttons that have the same value for their name property are in the
same group and are treated together. If you change the name of a single radio
button, you change which group of buttons it belongs to.

Do not confuse the name property with the label displayed on a Button. The
value property specifies the label for the button. The name property is not
displayed onscreen; it is used to refer programmatically to the button.

Method of Radio

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.

Property of Radio

Implemented in JavaScript 1.0
356 Client-Side JavaScript Reference

Radio.type
Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

type .

For all Radio objects, the value of the type property is "radio" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the VALUE attribute of the radio button.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of Radio

Read-only

Implemented in JavaScript 1.1

Property of Radio

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 357

Radio.value
Description When a VALUE attribute is specified in HTML, the value property is a string that
reflects it. When a VALUE attribute is not specified in HTML, the value property
is a string that evaluates to "on" . The value property is not displayed on the
screen but is returned to the server if the radio button or checkbox is selected.

Do not confuse the property with the selection state of the radio button or the
text that is displayed next to the button. The checked property determines the
selection state of the object, and the defaultChecked property determines the
default selection state. The text that is displayed is specified following the
INPUT tag.

Examples The following function evaluates the value property of a group of radio
buttons and displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < document.valueTest.radioObj.length; i++) {

msgWindow.document.write
("The value of radioObj[" + i + "] is " +
document.valueTest.radioObj[i].value +"
")

}
msgWindow.document.close()

}

This example displays the following values:

on
on
on
on

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="radio" NAME="radioObj">R&B

<INPUT TYPE="radio" NAME="radioObj" CHECKED>Soul

<INPUT TYPE="radio" NAME="radioObj">Rock and Roll

<INPUT TYPE="radio" NAME="radioObj">Blues

See also Radio.checked , Radio.defaultChecked
358 Client-Side JavaScript Reference

RegExp
RegExp
A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Created by A literal text format or the RegExp constructor function.

The literal format is used as follows:

/ pattern / flags

The constructor function is used as follows:

new RegExp(" pattern "[, " flags "])

Parameters

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

/ab+c/i
new RegExp("ab+c", "i")

Core object

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: added toSource method

pattern The text of the regular expression.

flags If specified, flags can have one of the following values:

• g: global match

• i : ignore case

• gi : both global match and ignore case
Chapter 1, Objects, Methods, and Properties 359

RegExp
Description When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

re = new RegExp("\\w+")
re = /\w+/

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 1.3 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.
For example, /b/ matches the character 'b'. By placing a backslash in
front of b, that is by using /\b/ , the character becomes special to
mean match a word boundary.
-or-
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, /a*/
means match 0 or more a's. To match * literally, precede the it with a
backslash; for example, /a*/ matches 'a*'.

^ Matches beginning of input or line.
For example, /^A/ does not match the 'A' in "an A," but does match it
in "An A."

$ Matches end of input or line.
For example, /t$/ does not match the 't' in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.
For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,} .
For example, /a+/ matches the 'a' in "candy" and all the a's in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.
For example, /e?le?/ matches the 'el' in "angel" and the 'le' in
"angle."
360 Client-Side JavaScript Reference

RegExp
. (The decimal point) matches any single character except the newline
character.
For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay'.

(x) Matches 'x' and remembers the match.
For example, /(foo)/ matches and remembers 'foo' in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1] , ..., [n] , or from the predefined RegExp object’s properties $1,
..., $9.

x|y Matches either 'x' or 'y'.
For example, /green|red/ matches 'green' in "green apple" and 'red'
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.
For example, /a{2}/ doesn't match the 'a' in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.
For example, /a{2,} doesn't match the 'a' in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding character.
For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.
For example, [abcd] is the same as [a-c] . They match the 'b' in
"brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.
For example, [^abc] is the same as [^a-c] . They initially match 'r'
in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b .)

Table 1.3 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 1, Objects, Methods, and Properties 361

RegExp
\b Matches a word boundary, such as a space. (Not to be confused with
[\b] .)
For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/
matches the 'ly' in "possibly yesterday."

\B Matches a non-word boundary.
For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/
matches 'ye' in "possibly yesterday."

\c X Where X is a control character. Matches a control character in a string.
For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9] .
For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite
number."

\D Matches any non-digit character. Equivalent to [^0-9] .
For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\v] .
for example, /\s\w*/ matches ' bar' in "foo bar."

\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v] .
For example, /\S/\w* matches 'foo' in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_] .
For example, /\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_] .
For example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

Table 1.3 Special characters in regular expressions. (Continued)

Character Meaning
362 Client-Side JavaScript Reference

RegExp
The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example,
new RegExp("ab+c") , provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don't know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the compile method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties input ,
multiline , lastMatch , lastParen , leftContext , rightContext ,
and $1 through $9 . The input and multiline properties can be preset. The
values for the other static properties are set after execution of the exec and
test methods of an individual regular expression object, and after execution
of the match and replace methods of String .

\ n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).
For example, /apple(,)\sorange\1/ matches 'apple, orange', in
"apple, orange, cherry, peach." A more complete example follows this
table.
Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the
next row.

\o octal
\x hex

Where \o octal is an octal escape value or \x hex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular
expressions.

Table 1.3 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 1, Objects, Methods, and Properties 363

RegExp
Property
Summary

Note that several of the RegExp properties have both long and short (Perl-like)
names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Method Summary

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See input.

$* See multiline.

$& See lastMatch.

$+ See lastParen.

$‘ See leftContext.

$’ See rightContext.

constructor Specifies the function that creates an object’s prototype.

global Whether or not to test the regular expression against all possible
matches in a string, or only against the first.

ignoreCase Whether or not to ignore case while attempting a match in a
string.

input The string against which a regular expression is matched.

lastIndex The index at which to start the next match.

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether or not to search in strings across multiple lines.

prototype Allows the addition of properties to all objects.

rightContext The substring following the most recent match.

source The text of the pattern.

Method Description

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.
364 Client-Side JavaScript Reference

RegExp
In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp is prepended to the $
properties.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo() {

re = /(\w+)\s(\d+)/;
re.exec();
window.alert(RegExp.$1 + ", your age i s " + RegExp.$2);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

test Tests for a match in its string parameter.

toSource Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of the specified object. Overrides
the Object.valueOf method.

Method Description
Chapter 1, Objects, Methods, and Properties 365

RegExp.$1, ..., $9
<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

$1, ..., $9 .

Properties that contain parenthesized substring matches, if any.

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input .

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array's indexes.

These properties can be used in the replacement text for the
String.replace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not included
in the regular expression, the script interprets $n 's literally (where n is a
positive integer).

Examples The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
366 Client-Side JavaScript Reference

RegExp.$_
$_ .

See input .

$* .

See multiline.

$& .

See lastMatch.

$+ .

See lastParen.

$‘ .

See leftContext.

$’ .

See rightContext.

compile .

Compiles a regular expression object during execution of a script.

Syntax regexp.compile(pattern [, flags])

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 367

RegExp.constructor
Parameters

Description Use the compile method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn't compiled each time it is
encountered. Use the compile method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s source ,
global , and ignoreCase properties.

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

regexp The name of the regular expression. It can be a variable name or a
literal.

pattern A string containing the text of the regular expression.

flags If specified, flags can have one of the following values:

• "g" : global match

• "i" : ignore case

• "gi" : both global match and ignore case

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
368 Client-Side JavaScript Reference

RegExp.exec
exec .

Executes the search for a match in a specified string. Returns a result array.

Syntax regexp .exec([str])
regexp ([str])

Parameters

Description As shown in the syntax description, a regular expression’s exec method can be
called either directly, (with regexp.exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true or false , use the test
method or the String search method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns null .

Consider the following example:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a
literal.

str The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.
Chapter 1, Objects, Methods, and Properties 369

RegExp.exec
The following table shows the results for this script:

Object Property/Index Description Example

myArray The contents of myArray ["dbBd", "bB", "d"]

index The 0-based index of the match in the
string

1

input The original string cdbBdbsbz

[0] The last matched characters dbBd

[1], ...[n] The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited.

[1] = bB
[2] = d

myRe lastIndex The index at which to start the next
match.

5

ignoreCase Indicates if the "i" flag was used to
ignore case

true

global Indicates if the "g" flag was used for a
global match

true

source The text of the pattern d(b+)(d)

RegExp lastMatch
$&

The last matched characters dbBd

leftContext
$`

The substring preceding the most recent
match

c

rightContext
$'

The substring following the most recent
match

bsbz

$1, ...$9 The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited, but
RegExp can only hold the last nine.

$1 = bB
$2 = d

lastParen
$+

The last parenthesized substring match, if
any.

d

370 Client-Side JavaScript Reference

RegExp.exec
If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of str specified by the regular expression’s
lastIndex property. For example, assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/ab*/g;
str = "abbcdefabh"
myArray = myRe.exec(str);
document.writeln("Foun d " + myArray[0] +

". Next match starts a t " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
document.writeln("Foun d " + mySecondArray[0] +

". Next match starts a t " + myRe.lastIndex)
</SCRIPT>

This script displays the following text:

Found abb . Next match starts at 3
Found ab. Next match starts at 9

Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",

"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]
Chapter 1, Objects, Methods, and Properties 371

RegExp.global
function lookup() {
firstName = /\w+/i();
if (!firstName)

window.alert (RegExp.inpu t + " isn't a name!");
else {

count = 0;
for (i=0; i<A.length; i++)

if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
if (count ==1)

midstrin g = " other has ";
else

midstrin g = " others have ";
window.alert ("Thanks , " + count + midstring + "the same name!")

}
}

</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>

global .

Whether or not the "g" flag is used with the regular expression.

Description global is a property of an individual regular expression object.

The value of global is true if the "g" flag was used; otherwise, false . The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0
372 Client-Side JavaScript Reference

RegExp.ignoreCase
ignoreCase .

Whether or not the "i" flag is used with the regular expression.

Description ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i" flag was used; otherwise, false .
The "i" flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

input .

The string against which a regular expression is matched. $_ is another name
for the same property.

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input .

If no string argument is provided to a regular expression's exec or test
methods, and if RegExp.input has a value, its value is used as the argument to
that method.

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 373

RegExp.lastIndex
The script or the browser can preset the input property. If preset and if no
string argument is explicitly provided, the value of input is used as the string
argument to the exec or test methods of the regular expression object. input
is set by the browser in the following cases:

• When an event handler is called for a TEXT form element, input is set to
the value of the contained text.

• When an event handler is called for a TEXTAREA form element, input is set
to the value of the contained text. Note that multiline is also set to true
so that the match can be executed over the multiple lines of text.

• When an event handler is called for a SELECT form element, input is set to
the value of the selected text.

• When an event handler is called for a Link object, input is set to the value
of the text between and .

The value of the input property is cleared after the event handler completes.

lastIndex .

A read/write integer property that specifies the index at which to start the next
match.

Description lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate
a global search. The following rules apply:

• If lastIndex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastIndex is set to 0.

• If lastIndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at lastIndex .

• If lastIndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and lastIndex is reset to 0.

Property of RegExp

Implemented in JavaScript 1.2, NES 3.0
374 Client-Side JavaScript Reference

RegExp.lastMatch
• Otherwise, lastIndex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

lastMatch .

The last matched characters. $& is another name for the same property.

Description Because lastMatch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastMatch .

lastParen .

The last parenthesized substring match, if any. $+ is another name for the same
property.

Description Because lastParen is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastParen .

re = /(hi)?/g Matches the empty string.

re("hi") Returns ["hi", "hi"] with lastIndex equal to 2.

re("hi") Returns [""] , an empty array whose zeroth element is the
match string. In this case, the empty string because lastIndex
was 2 (and still is 2) and "hi" has length 2.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 375

RegExp.leftContext
leftContext .

The substring preceding the most recent match. $‘ is another name for the
same property.

Description Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext .

multiline .

Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Description Because multiline is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.multiline .

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

The script or the browser can preset the multiline property. When an event
handler is called for a TEXTAREA form element, the browser sets multiline to
true . multiline is cleared after the event handler completes. This means that,
if you've preset multiline to true , it is reset to false after the execution of any
event handler.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0
376 Client-Side JavaScript Reference

RegExp.prototype
prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

rightContext .

The substring following the most recent match. $' is another name for the
same property.

Description Because rightContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.rightContext .

source .

A read-only property that contains the text of the pattern, excluding the forward
slashes and "g" or "i" flags.

Description source is a property of an individual regular expression object.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 377

RegExp.test
test .

Executes the search for a match between a regular expression and a specified
string. Returns true or false .

Syntax regexp .test([str])

Parameters

Description When you want to know whether a pattern is found in a string use the test
method (similar to the String.search method); for more information (but
slower execution) use the exec method (similar to the String.match
method).

Example The following example prints a message which depends on the success of the
test:

function testinput(re, str){
if (re.test(str))

midstrin g = " contains ";
else

midstrin g = " does not contain ";
document.write (str + midstring + re.source);

}

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a literal.

str The string against which to match the regular expression. If omitted, the
value of RegExp.input is used.

Method of RegExp

Implemented in JavaScript 1.3
378 Client-Side JavaScript Reference

RegExp.toString
Description The toSource method returns the following values:

• For the built-in RegExp object, toSource returns the following string
indicating that the source code is not available:

function Boolean() {
[native code]

}

• For instances of RegExp, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description The RegExp object overrides the toString method of the Object object; it
does not inherit Object.toString . For RegExp objects, the toString
method returns a string representation of the object.

Examples The following example displays the string value of a RegExp object:

myExp = new RegExp("a+b+c");
alert(myExp.toString()) displays "/a+b+c/"

See also Object.toString

Method of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 379

RegExp.valueOf
valueOf .

Returns the primitive value of a RegExp object.

Syntax valueOf()

Parameters None

Description The valueOf method of RegExp returns the primitive value of a RegExp
object as a string data type. This value is equivalent to RegExp.toString .

This method is usually called internally by JavaScript and not explicitly in code.

Examples myExp = new RegExp("a+b+c");
alert(myExp.valueOf()) displays "/a+b+c/"

See also RegExp.toString , Object.valueOf

Method of RegExp

Implemented in JavaScript 1.1

ECMA version ECMA-262
380 Client-Side JavaScript Reference

Reset
Reset
A reset button on an HTML form. A reset button resets all elements in a form to
their defaults.

Created by The HTML INPUT tag, with "reset" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates an appropriate Reset object
and puts it in the elements array of the corresponding Form object. You
access a Reset object by indexing this array. You can index the array either by
number or, if supplied, by using the value of the NAME attribute.

Event handlers • onBlur

• onClick

• onFocus

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods

JavaScript 1.2: added handleEvent method
Chapter 1, Objects, Methods, and Properties 381

Reset
Description A Reset object on a form looks as follows:

A Reset object is a form element and must be defined within a FORM tag.

The reset button’s onClick event handler cannot prevent a form from being
reset; once the button is clicked, the reset cannot be canceled.

Property
Summary Property Description

form Specifies the form containing the Reset object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the VALUE attribute.
382 Client-Side JavaScript Reference

Reset
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example displays a Text object with the default
value “CA” and a reset button with the text “Clear Form” displayed on its face.
If the user types a state abbreviation in the Text object and then clicks the
Clear Form button, the original value of “CA” is restored.

State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><INPUT TYPE="reset" VALUE="Clear Form">

Example 2. The following example displays two Text objects, a Select
object, and three radio buttons; all of these objects have default values. The
form also has a reset button with the text “Defaults” on its face. If the user
changes the value of any of the objects and then clicks the Defaults button, the
original values are restored.

<HTML>
<HEAD>
<TITLE>Reset object example</TITLE>
</HEAD>
<BODY>
<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Santa Cruz" SIZE="20">
State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><SELECT NAME="colorChoice">

<OPTION SELECTED> Blue
<OPTION> Yellow
<OPTION> Green
<OPTION> Red

</SELECT>

Method Description

blur Removes focus from the reset button.

click Simulates a mouse-click on the reset button.

focus Gives focus to the reset button.

handleEvent Invokes the handler for the specified event.
Chapter 1, Objects, Methods, and Properties 383

Reset.blur
<P><INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
CHECKED> Soul and R&B

<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz">
Jazz

<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical">
Classical

<P><INPUT TYPE="reset" VALUE="Defaults" NAME="reset1">
</FORM>
</BODY>
</HTML>

See also Button , Form, onReset , Form.reset , Submit

blur .

Removes focus from the reset button.

Syntax blur()

Parameters None

Examples The following example removes focus from the reset button userReset:

userReset.blur()

This example assumes that the button is defined as

<INPUT TYPE="reset" NAME="userReset">

See also Reset.focus

click .

Simulates a mouse-click on the reset button, but does not trigger an object’s
onClick event handler.

Syntax click()

Parameters None

Method of Reset

Implemented in JavaScript 1.0

Method of Reset

Implemented in JavaScript 1.0
384 Client-Side JavaScript Reference

Reset.focus
focus .

Navigates to the reset button and gives it focus.

Syntax focus()

Parameters None

See also Reset.blur

form .

An object reference specifying the form containing the reset button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

See also Form

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Method of Reset

Implemented in JavaScript 1.0

Property of Reset

Read-only

Implemented in JavaScript 1.0

Method of Reset

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.
Chapter 1, Objects, Methods, and Properties 385

Reset.name
name .

A string specifying the name of the reset button.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The value of the name property initially reflects the value of the NAME attribute.
Changing the name property overrides this setting.

Do not confuse the name property with the label displayed on the reset button.
The value property specifies the label for this button. The name property is not
displayed on the screen; it is used to refer programmatically to the button.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Reset element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

See also Reset.value

Property of Reset

Implemented in JavaScript 1.0
386 Client-Side JavaScript Reference

Reset.type
type .

For all Reset objects, the value of the type property is "reset" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the reset button’s VALUE attribute.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description This string is displayed on the face of the button. When a VALUE attribute is not
specified in HTML, the value property is the string "Reset" .

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
button.

Property of Reset

Read-only

Implemented in JavaScript 1.1

Property of Reset

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 387

Reset.value
Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("helpButton.value is " +

document.valueTest.helpButton.value + "
")
msgWindow.document.close()

}

This example displays the following values:

Query Submit
Reset
Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

See also Reset.name
388 Client-Side JavaScript Reference

screen
screen
Contains properties describing the display screen and colors.

Created by The JavaScript runtime engine creates the screen object for you. You can
access its properties automatically.

Description This object contains read-only properties that allow you to get information
about the user’s display.

Property
Summary

Method Summary This object inherits the watch and unwatch methods from Object .

Client-side object

Implemented in JavaScript 1.2

Method Description

availHeight Specifies the height of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the
operating system, such as the Taskbar on Windows.

availLeft Specifies the x-coordinate of the first pixel that is not allocated
to permanent or semipermanent user interface features.

availTop Specifies the y-coordinate of the first pixel that is not allocated
to permanent or semipermanent user interface features.

availWidth Specifies the width of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the
operating system, such as the Taskbar on Windows.

colorDepth The bit depth of the color palette, if one is in use; otherwise, the
value is derived from screen.pixelDepth .

height Display screen height.

pixelDepth Display screen color resolution (bits per pixel).

width Display screen width.
Chapter 1, Objects, Methods, and Properties 389

screen.availHeight
Examples The following function creates a string containing the current display
properties:

function screen_properties() {
document.examples.results.value = "("+screen.width+" x

"+screen.height+") pixels, "+
screen.pixelDepth +" bit depth, "+
screen.colorDepth +" bit color palette depth.";

} // end function screen_properties

availHeight .

Specifies the height of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the operating system, such
as the Taskbar on Windows.

See also screen.availTop

availLeft .

Specifies the x-coordinate of the first pixel that is not allocated to permanent or
semipermanent user interface features.

See also screen.availWidth

availTop .

Specifies the y-coordinate of the first pixel that is not allocated to permanent or
semipermanent user interface features.

See also screen.availHeight

Property of screen

Implemented in JavaScript 1.2

Property of screen

Implemented in JavaScript 1.2

Property of screen

Implemented in JavaScript 1.2
390 Client-Side JavaScript Reference

screen.availWidth
availWidth .

Specifies the width of the screen, in pixels, minus permanent or semipermanent
user interface features displayed by the operating system, such as the Taskbar
on Windows.

See also screen.availLeft

colorDepth .

The bit depth of the color palette in bits per pixel, if a color palette is in use.
Otherwise, this property is derived from screen.pixelDepth .

height .

Display screen height, in pixels.

pixelDepth .

Display screen color resolution, in bits per pixel.

width .

Display screen width, in pixels.

Property of screen

Implemented in JavaScript 1.2

Property of screen

Implemented in JavaScript 1.2

Property of screen

Implemented in JavaScript 1.2

Property of screen

Implemented in JavaScript 1.2

Property of screen

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 391

Select
Select
A selection list on an HTML form. The user can choose one or more items from
a selection list, depending on how the list was created.

Created by The HTML SELECT tag. For a given form, the JavaScript runtime engine creates
appropriate Select objects for each selection list and puts these objects in the
elements array of the corresponding Form object. You access a Select
object by indexing this array. You can index the array either by number or, if
supplied, by using the value of the NAME attribute.

The runtime engine also creates Option objects for each OPTION tag inside the
SELECT tag.

Event handlers • onBlur

• onChange

• onFocus

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added the ability to add and
delete options.

JavaScript 1.2: added handleEvent method.
392 Client-Side JavaScript Reference

Select
Description The following figure shows a form containing two selection lists. The user can
choose one item from the list on the left and can choose multiple items from
the list on the right:

A Select object is a form element and must be defined within a FORM tag.

Property
Summary Property Description

form Specifies the form containing the selection list.

length Reflects the number of options in the selection list.

name Reflects the NAME attribute.

options Reflects the OPTION tags.

selectedIndex Reflects the index of the selected option (or the first selected
option, if multiple options are selected).

type Specifies that the object is represents a selection list and
whether it can have one or more selected options.
Chapter 1, Objects, Methods, and Properties 393

Select
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example displays two selection lists. In the first list,
the user can select only one item; in the second list, the user can select multiple
items.

Choose the music type for your free CD:
<SELECT NAME="music_type_single">

<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>
<P>Choose the music types for your free CDs:

<SELECT NAME="music_type_multi" MULTIPLE>

<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

Example 2. The following example displays two selection lists that let the user
choose a month and day. These selection lists are initialized to the current date.
The user can change the month and day by using the selection lists or by
choosing preset dates from radio buttons. Text fields on the form display the
values of the Select object’s properties and indicate the date chosen and
whether it is Cinco de Mayo.

Method Description

blur Removes focus from the selection list.

focus Gives focus to the selection list.

handleEvent Invokes the handler for the specified event.
394 Client-Side JavaScript Reference

Select
<HTML>
<HEAD>
<TITLE>Select object example</TITLE>
</HEAD>
<BODY>
<SCRIPT>
var today = new Date()
//---------------
function updatePropertyDisplay(monthObj,dayObj) {

// Get date strings
var monthInteger, dayInteger, monthString, dayString
monthInteger=monthObj.selectedIndex
dayInteger=dayObj.selectedIndex
monthString=monthObj.options[monthInteger].text
dayString=dayObj.options[dayInteger].text
// Display property values
document.selectForm.textFullDate.value=monthStrin g + " " + dayString
document.selectForm.textMonthLength.value=monthObj.length
document.selectForm.textDayLength.value=dayObj.length
document.selectForm.textMonthName.value=monthObj.name
document.selectForm.textDayName.value=dayObj.name
document.selectForm.textMonthIndex.value=monthObj.selectedIndex
document.selectForm.textDayIndex.value=dayObj.selectedIndex
// Is it Cinco de Mayo?
if (monthObj.options[4].selected && dayObj.options[4].selected)

document.selectForm.textCinco.value="Yes!"
else

document.selectForm.textCinco.value="No"
}
</SCRIPT>
<!--------------->
<FORM NAME="selectForm">
<P>Choose a month and day:
Month: <SELECT NAME="monthSelection"

onChange="updatePropertyDisplay(this,document.selectForm.daySelection)">
<OPTION> January <OPTION> February <OPTION> March
<OPTION> April <OPTION> May <OPTION> June
<OPTION> July <OPTION> August <OPTION> September
<OPTION> October <OPTION> November <OPTION> December

</SELECT>
Day: <SELECT NAME="daySelection"

onChange="updatePropertyDisplay(document.selectForm.monthSelection,this)">
<OPTION> 1 <OPTION> 2 <OPTION> 3 <OPTION> 4 <OPTION> 5
<OPTION> 6 <OPTION> 7 <OPTION> 8 <OPTION> 9 <OPTION> 10
<OPTION> 11 <OPTION> 12 <OPTION> 13 <OPTION> 14 <OPTION> 15
<OPTION> 16 <OPTION> 17 <OPTION> 18 <OPTION> 19 <OPTION> 20
<OPTION> 21 <OPTION> 22 <OPTION> 23 <OPTION> 24 <OPTION> 25
<OPTION> 26 <OPTION> 27 <OPTION> 28 <OPTION> 29 <OPTION> 30
<OPTION> 31

</SELECT>
Chapter 1, Objects, Methods, and Properties 395

Select
<P>Set the date to:
<INPUT TYPE="radio" NAME="dateChoice"

onClick="
monthSelection.selectedIndex=0;
daySelection.selectedIndex=0;
updatePropertyDisplay

document.selectForm.monthSelection,document.selectForm.daySelection)">
New Year's Day

<INPUT TYPE="radio" NAME="dateChoice"
onClick="

monthSelection.selectedIndex=4;
daySelection.selectedIndex=4;
updatePropertyDisplay

(document.selectForm.monthSelection,document.selectForm.daySelection)">
Cinco de Mayo

<INPUT TYPE="radio" NAME="dateChoice"
onClick="

monthSelection.selectedIndex=5;
daySelection.selectedIndex=20;
updatePropertyDisplay

(document.selectForm.monthSelection,document.selectForm.daySelection)">
Summer Solstice

<P>Property values:

Date chosen: <INPUT TYPE="text" NAME="textFullDate" VALUE="" SIZE=20">

monthSelection.length<INPUT TYPE="text" NAME="textMonthLength" VALUE="" SIZE=20">

daySelection.length<INPUT TYPE="text" NAME="textDayLength" VALUE="" SIZE=20">

monthSelection.name<INPUT TYPE="text" NAME="textMonthName" VALUE="" SIZE=20">

daySelection.name<INPUT TYPE="text" NAME="textDayName" VALUE="" SIZE=20">

monthSelection.selectedIndex

<INPUT TYPE="text" NAME="textMonthIndex" VALUE="" SIZE=20">

daySelection.selectedIndex<INPUT TYPE="text" NAME="textDayIndex" VALUE="" SIZE=20">

Is it Cinco de Mayo? <INPUT TYPE="text" NAME="textCinco" VALUE="" SIZE=20">
<SCRIPT>
document.selectForm.monthSelection.selectedIndex=today.getMonth()
document.selectForm.daySelection.selectedIndex=today.getDate()-1
updatePropertyDisplay(document.selectForm.monthSelection,document.selectForm.daySelection)
</SCRIPT>
</FORM>
</BODY>
</HTML>
396 Client-Side JavaScript Reference

Select
Example 3. Add an option with the Option constructor. The following
example creates two Select objects, one with and one without the MULTIPLE
attribute. No options are initially defined for either object. When the user clicks
a button associated with the Select object, the populate function creates four
options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {

colorArray = new Array("Red", "Blue", "Yellow", "Green")

var option0 = new Option("Red", "color_red")
var option1 = new Option("Blue", "color_blue")
var option2 = new Option("Yellow", "color_yellow")
var option3 = new Option("Green", "color_green")

for (var i=0; i < 4; i++) {
eval("inForm.selectTest.options[i]=option" + i)
if (i==0) {

inForm.selectTest.options[i].selected=true
}

}

history.go(0)
}
</SCRIPT>

<H3>Select Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest"></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<P>
</FORM>

<HR>
<H3>Select-Multiple Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest" multiple></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</FORM>

Example 4. Delete an option. The following function removes an option
from a Select object.

function deleteAnItem(theList,itemNo) {
theList.options[itemNo]=null
history.go(0)

}

See also Form, Radio
Chapter 1, Objects, Methods, and Properties 397

Select.blur
blur .

Removes focus from the selection list.

Syntax blur()

Parameters None

See also Select.focus

focus .

Navigates to the selection list and gives it focus.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a selection list and give it focus. The user
can then make selections from the list.

See also Select.blur

form .

An object reference specifying the form containing the selection list.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

See also Form

Method of Select

Implemented in JavaScript 1.0

Method of Select

Implemented in JavaScript 1.0

Property of Select

Read-only

Implemented in JavaScript 1.0
398 Client-Side JavaScript Reference

Select.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

length .

The number of options in the selection list.

Description This value of this property is the same as the value of Option.length .

name .

A string specifying the name of the selection list.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on the
screen; it is used to refer to the list programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Select element on the same form
have their NAME attribute set to "myField" , an array with the elements

Method of Select

Implemented in JavaScript 1.2

event The name of an event for which the object has an event handler.

Property of Select

Read-only

Implemented in JavaScript 1.0

Property of Select

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 399

Select.options
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

options .

An array corresponding to options in a Select object in source order.

Description You can refer to the options of a Select object by using the options array.
This array contains an entry for each option in a Select object (OPTION tag) in
source order. For example, if a Select object named musicStyle contains
three options, you can access these options as musicStyle.options[0] ,
musicStyle.options[1] , and musicStyle.options[2] .

To obtain the number of options in the selection list, you can use either
Select.length or the length property of the options array. For example,
you can get the number of options in the musicStyle selection list with either
of these expressions:

musicStyle.length
musicStyle.options.length

Property of Select

Read-only

Implemented in JavaScript 1.0
400 Client-Side JavaScript Reference

Select.options
You can add or remove options from a selection list using this array. To add or
replace an option to an existing Select object, you assign a new Option
object to a place in the array. For example, to create a new Option object
called jeans and add it to the end of the selection list named myList , you
could use the following code:

jeans = new Option("Blue Jeans", "jeans", false, false);
myList.options[myList.length] = jeans;

To delete an option from a Select object, you set the appropriate index of the
options array to null. Removing an option compresses the options array. For
example, assume that myList has 5 elements in it, the value of the fourth
element is "foo" , and you execute this statement:

myList.options[1] = null

Now, myList has 4 elements in it and the value of the third element is "foo" .

After you delete an option, you must refresh the document by using
history.go(0) . This statement must be last. When the document reloads,
variables are lost if not saved in cookies or form element values.

You can determine which option in a selection list is currently selected by
using either the selectedIndex property of the options array or of the
Select object itself. That is, the following expressions return the same value:

musicStyle.selectedIndex
musicStyle.options.selectedIndex

For more information about this property, see Select.selectedIndex .

For Select objects that can have multiple selections (that is, the SELECT tag
has the MULTIPLE attribute), the selectedIndex property is not very useful. In
this case, it returns the index of the first selection. To find all the selected
options, you have to loop and test each option individually. For example, to
print a list of all selected options in a selection list named mySelect , you could
use code such as this:

document.write("You’ve selected the following options:\n")
for (var i = 0; i < mySelect.options.length; i++) {

if (mySelect.options[i].selected)
document.write(" mySelect.options[i].text\n")

}

In general, to work with individual options in a selection list, you work with
the appropriate Option object.
Chapter 1, Objects, Methods, and Properties 401

Select.selectedIndex
selectedIndex .

An integer specifying the index of the selected option in a Select object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description Options in a Select object are indexed in the order in which they are defined,
starting with an index of 0. You can set the selectedIndex property at any
time. The display of the Select object updates immediately when you set the
selectedIndex property.

If no option is selected, selectedIndex has a value of -1.

In general, the selectedIndex property is more useful for Select objects that
are created without the MULTIPLE attribute. If you evaluate selectedIndex
when multiple options are selected, the selectedIndex property specifies the
index of the first option only. Setting selectedIndex clears any other options
that are selected in the Select object.

The Option.selected property is more useful in conjunction with Select
objects that are created with the MULTIPLE attribute. With the
Option.selected property, you can evaluate every option in the options
array to determine multiple selections, and you can select individual options
without clearing the selection of other options.

Examples In the following example, the getSelectedIndex function returns the selected
index in the musicType Select object:

function getSelectedIndex() {
return document.musicForm.musicType.selectedIndex

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

Property of Select

Implemented in JavaScript 1.0
402 Client-Side JavaScript Reference

Select.type
See also Option.defaultSelected , Option.selected

type .

For all Select objects created with the MULTIPLE keyword, the value of the
type property is "select-multiple" . For Select objects created without this
keyword, the value of the type property is "select-one" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

Property of Select

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 403

String
String
An object representing a series of characters in a string.

Created by The String constructor:

new String(string)

Parameters

Description The String object is a wrapper around the string primitive data type. Do not
confuse a string literal with the String object. For example, the following
code creates the string literal s1 and also the String object s2 :

s1 = "foo" // creates a string literal value
s2 = new String("foo") // creates a String object

You can call any of the methods of the String object on a string literal
value—JavaScript automatically converts the string literal to a temporary
String object, calls the method, then discards the temporary String object.
You can also use the String.length property with a string literal.

Core object

Implemented in JavaScript 1.0: Create a String object only by quoting characters.

JavaScript 1.1, NES 2.0: added String constructor; added
prototype property; added split method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)

JavaScript 1.2, NES 3.0: added concat , match , replace ,
search , slice , and substr methods.

JavaScript 1.3: added toSource method; changed charCodeAt ,
fromCharCode , and replace methods

ECMA version ECMA-262

string Any string.
404 Client-Side JavaScript Reference

String
You should use string literals unless you specifically need to use a String
object, because String objects can have counterintuitive behavior. For
example:

s1 = "2 + 2" // creates a string literal value
s2 = new String("2 + 2") // creates a String object
eval(s1) // returns the number 4
eval(s2) // returns the string "2 + 2"

A string can be represented as a literal enclosed by single or double quotation
marks; for example, “Netscape” or ‘Netscape’.

You can convert the value of any object into a string using the top-level
String function.

Property
Summary

Method Summary

Property Description

constructor Specifies the function that creates an object’s prototype.

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a
BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charAt Returns the character at the specified index .

charCodeAt Returns a number indicating the Unicode value of the character
at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in
a TT tag.

fontcolor Causes a string to be displayed in the specified color as if it
were in a tag.
Chapter 1, Objects, Methods, and Properties 405

String
fontsize Causes a string to be displayed in the specified font size as if it
were in a tag.

fromCharCode Returns a string created by using the specified sequence of
Unicode values.

indexOf Returns the index within the calling String object of the first
occurrence of the specified value, or -1 if not found.

italics Causes a string to be italic, as if it were in an I tag.

lastIndexOf Returns the index within the calling String object of the last
occurrence of the specified value, or -1 if not found.

link Creates an HTML hypertext link that requests another URL.

match Used to match a regular expression against a string.

replace Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression
and a specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a
SMALL tag.

split Splits a String object into an array of strings by separating the
string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in
a STRIKE tag.

sub Causes a string to be displayed as a subscript, as if it were in a
SUB tag.

substr Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring Returns the characters in a string between two indexes into the
string.

sup Causes a string to be displayed as a superscript, as if it were in a
SUP tag.

toLowerCase Returns the calling string value converted to lowercase.

Method Description
406 Client-Side JavaScript Reference

String
In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1: String literal. The following statement creates a string literal:

var last_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
"SCHAEFER," and "schaefer" :

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code
displays “The first character in the string is H”:

var myString = "Hello"
myString[0] // returns "H"

Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var lastName = "Schaefer"
var firstName = "Jesse"
empWindow=window.open('string2.html','window1','width=300,height=300')

If the HTML source for the second window (string2.html) creates two string
variables, empLastName and empFirstName , the following code in the first
window assigns values to the second window’s variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName

toSource Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

toUpperCase Returns the calling string value converted to uppercase.

valueOf Returns the primitive value of the specified object. Overrides the
Object.valueOf method.

Method Description
Chapter 1, Objects, Methods, and Properties 407

String.anchor
The following code in the first window displays the values of the second
window’s variables:

alert('empFirstName in empWindow i s ' + empWindow.empFirstName)
alert('empLastName in empWindow i s ' + empWindow.empLastName)

anchor .

Creates an HTML anchor that is used as a hypertext target.

Syntax anchor(nameAttribute)

Parameters

Description Use the anchor method with the document.write or document.writeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then call write or writeln
to display the anchor in a document. In server-side JavaScript, use the write
function to display the anchor.

In the syntax, the text string represents the literal text that you want the user
to see. The nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the
document.anchors array.

Examples The following example opens the msgWindow window and creates an anchor
for the table of contents:

var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

See also String.link

Method of String

Implemented in JavaScript 1.0, NES 2.0

nameAttribute A string.
408 Client-Side JavaScript Reference

String.big
big .

Causes a string to be displayed in a big font as if it were in a BIG tag.

Syntax big()

Parameters None

Description Use the big method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.fontsize , String.small

blink .

Causes a string to blink as if it were in a BLINK tag.

Syntax blink()

Parameters None

Description Use the blink method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 409

String.bold
Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.bold , String.italics , String.strike

bold .

Causes a string to be displayed as bold as if it were in a B tag.

Syntax bold()

Parameters None

Description Use the bold method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

Method of String

Implemented in JavaScript 1.0, NES 2.0
410 Client-Side JavaScript Reference

String.charAt
The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink , String.italics , String.strike

charAt .

Returns the specified character from the string.

Syntax charAt(index)

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called stringName
is stringName.length - 1 . If the index you supply is out of range, JavaScript
returns an empty string.

Examples The following example displays characters at different locations in the string
"Brave new world" :

var anyString="Brave new world"

document.writeln("The character at index 0 is " + anyString.charAt(0))
document.writeln("The character at index 1 is " + anyString.charAt(1))
document.writeln("The character at index 2 is " + anyString.charAt(2))
document.writeln("The character at index 3 is " + anyString.charAt(3))
document.writeln("The character at index 4 is " + anyString.charAt(4))

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

index An integer between 0 and 1 less than the length of the string.
Chapter 1, Objects, Methods, and Properties 411

String.charCodeAt
These lines display the following:

The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

See also String.indexOf , String.lastIndexOf , String.split

charCodeAt .

Returns a number indicating the Unicode value of the character at the given
index.

Syntax charCodeAt([index])

Parameters

Description Unicode values range from 0 to 65,535. The first 128 Unicode values are a
direct match of the ASCII character set. For information on Unicode, see the
Client-Side JavaScript Guide.

Backward
Compatibility

JavaScript 1.2. The charCodeAt method returns a number indicating the
ISO-Latin-1 codeset value of the character at the given index. The ISO-Latin-1
codeset ranges from 0 to 255. The first 0 to 127 are a direct match of the ASCII
character set.

Example Example 1. The following example returns 65, the Unicode value for A.

"ABC".charCodeAt(0) // returns 65

Method of String

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: returns a Unicode value rather than an ISO-Latin-1
value

ECMA version ECMA-262

index An integer between 0 and 1 less than the length of the string. The
default value is 0.
412 Client-Side JavaScript Reference

String.concat
Example 2. The following example enables the creation of an event used to
simulate a key press. A KeyPress event has a which property that represents the
ASCII value of the pressed key. If you know the letter, number, or symbol, you
can use charCodeAt to supply the ASCII value to which .

//create an event object with appropriate property values
ev = new Event()
ev.type = KeyPress
ev.layerX = 150
//assign values to layerY, pageX, pageY, screenX, and screenY
...
//assign the ASCII value to the which property
ev.which = "v".charCodeAt(0)
//assign modifier property
ev.modifiers = How do I do this?

concat .

Combines the text of two or more strings and returns a new string.

Syntax concat(string2 , string3 [, ..., stringN])

Parameters

Description concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

Example The following example combines two strings into a new string.

s1="Oh "
s2="what a beautiful "
s3="mornin'."
s4=s1.concat(s2,s3) // returns "Oh what a beautiful mornin'."

Method of String

Implemented in JavaScript 1.2, NES 3.0

string2...
string N

Strings to concatenate to this string.
Chapter 1, Objects, Methods, and Properties 413

String.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor .

fixed .

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Syntax fixed()

Parameters None

Description Use the fixed method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses the fixed method to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

Property of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.0, NES 2.0
414 Client-Side JavaScript Reference

String.fontcolor
fontcolor .

Causes a string to be displayed in the specified color as if it were in a <FONT

COLOR=color> tag.

Syntax fontcolor(color)

Parameters

Description Use the fontcolor method with the write or writeln methods to format
and display a string in a document. In server-side JavaScript, use the write
function to display the string.

If you express color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

The fontcolor method overrides a value set in the fgColor property.

Examples The following example uses the fontcolor method to change the color of a
string:

var worldString="Hello, world"

document.write(worldString.fontcolor("maroon") +
" is maroon in this line")

document.write("<P>" + worldString.fontcolor("salmon") +
" is salmon in this line")

document.write("<P>" + worldString.fontcolor("red") +
" is red in this line")

document.write("<P>" + worldString.fontcolor("8000") +
" is maroon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FA8072") +
" is salmon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FF00") +
" is red in hexadecimal in this line")

Method of String

Implemented in JavaScript 1.0, NES 2.0

color A string expressing the color as a hexadecimal RGB triplet or as a string
literal. String literals for color names are listed in the Client-Side JavaScript
Guide.
Chapter 1, Objects, Methods, and Properties 415

String.fontsize
The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line

fontsize .

Causes a string to be displayed in the specified font size as if it were in a <FONT

SIZE=size> tag.

Syntax fontsize(size)

Parameters

Description Use the fontsize method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

When you specify size as an integer, you set the size of stringName to one of
the 7 defined sizes. When you specify size as a string such as "-2" , you adjust
the font size of stringName relative to the size set in the BASEFONT tag.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

Method of String

Implemented in JavaScript 1.0, NES 2.0

size An integer between 1 and 7, a string representing a signed integer between 1
and 7.
416 Client-Side JavaScript Reference

String.fromCharCode
The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big , String.small

fromCharCode .

Returns a string created by using the specified sequence of Unicode values.

Syntax fromCharCode(num1, ..., numN)

Parameters

Description This method returns a string and not a String object.

Because fromCharCode is a static method of String , you always use it as
String.fromCharCode() , rather than as a method of a String object you
created.

Backward
Compatibility

JavaScript 1.2. The fromCharCode method returns a string created by using
the specified sequence of ISO-Latin-1 codeset values.

Examples Example 1. The following example returns the string "ABC".

String.fromCharCode(65,66,67)

Example 2. The which property of the KeyDown, KeyPress , and KeyUp events
contains the ASCII value of the key pressed at the time the event occurred. If
you want to get the actual letter, number, or symbol of the key, you can use
fromCharCode . The following example returns the letter, number, or symbol of
the KeyPress event’s which property.

String.fromCharCode(KeyPress.which)

Method of String

Static

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: uses a Unicode value rather than an ISO-Latin-1
value

ECMA version ECMA-262

num1, ..., num N A sequence of numbers that are Unicode values.
Chapter 1, Objects, Methods, and Properties 417

String.indexOf
indexOf .

Returns the index within the calling String object of the first occurrence of the
specified value, starting the search at fromIndex , or -1 if the value is not found.

Syntax indexOf(searchValue [, fromIndex])

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called stringName
is stringName.length - 1 .

"Blue Whale".indexOf("Blue") // returns 0
"Blue Whale".indexOf("Blute") // returns -1
"Blue Whale".indexOf("Whale",0) // returns 5
"Blue Whale".indexOf("Whale",5) // returns 5
"Blue Whale".indexOf("",9) // returns 9
"Blue Whale".indexOf("",10) // returns 10
"Blue Whale".indexOf("",11) // returns 10

The indexOf method is case sensitive. For example, the following expression
returns -1:

"Blue Whale".indexOf("blue")

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

searchValue A string representing the value to search for.

fromIndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is 0.
418 Client-Side JavaScript Reference

String.indexOf
Examples Example 1. The following example uses indexOf and lastIndexOf to locate
values in the string "Brave new world."

var anyString="Brave new world"

// Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
// Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
// Displays 6
document.write("<P>The index of 'new' from the beginning is " +

anyString.indexOf("new"))
// Displays 6
document.write("<P>The index of 'new' from the end is " +

anyString.lastIndexOf("new"))

Example 2. The following example defines two string variables. The variables
contain the same string except that the second string contains uppercase letters.
The first writeln method displays 19. But because the indexOf method is
case sensitive, the string "cheddar" is not found in myCapString , so the
second writeln method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
document.writeln('myString.indexOf("cheddar") is ' +

myString.indexOf("cheddar"))
document.writeln('<P>myCapString.indexOf("cheddar") is ' +

myCapString.indexOf("cheddar"))

Example 3. The following example sets count to the number of occurrences
of the letter x in the string str :

count = 0;
pos = str.indexOf("x");
while (pos != -1) {

count++;
pos = str.indexOf("x",pos+1);

}

See also String.charAt , String.lastIndexOf , String.split
Chapter 1, Objects, Methods, and Properties 419

String.italics
italics .

Causes a string to be italic, as if it were in an <I > tag.

Syntax italics()

Parameters None

Description Use the italics method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink , String.bold , String.strike

lastIndexOf .

Returns the index within the calling String object of the last occurrence of the
specified value, or -1 if not found. The calling string is searched backward,
starting at fromIndex .

Syntax lastIndexOf(searchValue [, fromIndex])

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
420 Client-Side JavaScript Reference

String.lastIndexOf
Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is stringName .length - 1.

"canal".lastIndexOf("a") // returns 3
"canal".lastIndexOf("a",2) // returns 1
"canal".lastIndexOf("a",0) // returns -1
"canal".lastIndexOf("x") // returns -1

The lastIndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Examples The following example uses indexOf and lastIndexOf to locate values in the
string "Brave new world."

var anyString="Brave new world"

// Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
// Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
// Displays 6
document.write("<P>The index of 'new' from the beginning is " +

anyString.indexOf("new"))
// Displays 6
document.write("<P>The index of 'new' from the end is " +

anyString.lastIndexOf("new"))

See also String.charAt , String.indexOf , String.split

searchValue A string representing the value to search for.

fromIndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is the length of the string.
Chapter 1, Objects, Methods, and Properties 421

String.length
length .

The length of the string.

Description For a null string, length is 0.

Examples The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length i s " + x.length)

link .

Creates an HTML hypertext link that requests another URL.

Syntax link(hrefAttribute)

Parameters

Description Use the link method to programmatically create a hypertext link, and then call
write or writeln to display the link in a document. In server-side JavaScript,
use the write function to display the link.

Links created with the link method become elements in the links array of the
document object. See document.links .

Property of String

Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.0, NES 2.0

hrefAttribute Any string that specifies the HREF attribute of the A tag; it should be
a valid URL (relative or absolute).
422 Client-Side JavaScript Reference

String.match
Examples The following example displays the word “Netscape” as a hypertext link that
returns the user to the Netscape home page:

var hotText="Netscape"
var URL="http://home.netscape.com"

document.write("Click to return t o " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Netscape

See also Anchor

match .

Used to match a regular expression against a string.

Syntax match(regexp)

Parameters

Description If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with match .

Note If you execute a match simply to find true or false, use String.search or the
regular expression test method.

Examples Example 1. In the following example, match is used to find 'Chapter' followed
by 1 or more numeric characters followed by a decimal point and numeric
character 0 or more times. The regular expression includes the i flag so that
case will be ignored.

<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT>

Method of String

Implemented in JavaScript 1.2

regexp Name of the regular expression. It can be a variable name or a literal.
Chapter 1, Objects, Methods, and Properties 423

String.prototype
This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1

'Chapter 3.4.5.1' is the first match and the first value remembered from
(Chapter \d+(\.\d)*) .

'.1' is the second value remembered from (\.\d) .

Example 2. The following example demonstrates the use of the global and
ignore case flags with match .

<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT>

The returned array contains D, d.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .
Property of String

Implemented in JavaScript 1.1, NES 3.0

ECMA version ECMA-262
424 Client-Side JavaScript Reference

String.replace
replace .

Finds a match between a regular expression and a string, and replaces the
matched substring with a new substring.

Syntax replace(regexp , newSubStr)
replace(regexp , function)

Versions prior to JavaScript 1.3:

replace(regexp , newSubStr)

Parameters

Description This method does not change the String object it is called on; it simply returns
a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular expression.
These can be included separately or together. The following two examples
below show how to use these flags with replace .

Specifying a function as a parameter. When you specify a function as the
second parameter, the function is invoked after the match has been performed.
(The use of a function in this manner is often called a lambda expression.)

In your function, you can dynamically generate the string that replaces the
matched substring. The result of the function call is used as the replacement
value.

Method of String

Implemented in JavaScript 1.2

JavaScript 1.3: supports the nesting of a function in place of the
second argument

regexp The name of the regular expression. It can be a variable name or a literal.

newSubStr The string to put in place of the string found with regexp . This string can
include the RegExp properties $1, ..., $9 , lastMatch ,
lastParen , leftContext , and rightContext .

function A function to be invoked after the match has been performed.
Chapter 1, Objects, Methods, and Properties 425

String.replace
The nested function can use the matched substrings to determine the new
string (newSubStr) that replaces the found substring. You get the matched
substrings through the parameters of your function. The first parameter of your
function holds the complete matched substring. Other parameters can be used
for parenthetical matches, remembered submatch strings. For example, the
following replace method returns XX.zzzz - XX , zzzz.

"XXzzzz".replace(/(X*)(z*)/,
function (str, p1, p2) {

return st r + " - " + p1 + " , " + p2;
}

)

The array returned from the exec method of the RegExp object and the
subsequent match is available to your function. You can use the content of the
array plus the input and the index (index of match in the input string)
properties of the array to perform additional tasks before the method replaces
the substring.

Examples Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits replace to replace each occurrence
of 'apples' in the string with 'oranges.'

<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
document.write(newstr)
</SCRIPT>

This prints "oranges are round, and oranges are juicy."

Example 2. In the following example, the regular expression is defined in
replace and includes the ignore case flag.

<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
document.write(newstr)
</SCRIPT>

This prints "Twas the night before Christmas..."
426 Client-Side JavaScript Reference

String.replace
Example 3. The following script switches the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 4. The following example replaces a Fahrenheit degree with its
equivalent Celsius degree. The Fahrenheit degree should be a number ending
with F. The function returns the Celsius number ending with C. For example, if
the input number is 212F, the function returns 100C. If the number is 0F, the
function returns -17.77777777777778C.

The regular expression test checks for any number that ends with F. The
number of Fahrenheit degree is accessible to your function through the
parameter $1 . The function sets the Celsius number based on the Fahrenheit
degree passed in a string to the f2c function. f2c then returns the Celsius
number. This function approximates Perl’s s///e flag.

function f2c(x) {
var s = String(x)
var test = /(\d+(\.\d*)?)F\b/g
return s.replace

(test,
myfunction ($0,$1,$2) {

return (($1-32) * 5/9) + "C";
}

)
}

Chapter 1, Objects, Methods, and Properties 427

String.search
search .

Executes the search for a match between a regular expression and this String
object.

Syntax search(regexp)

Parameters

Description If successful, search returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use search
(similar to the regular expression test method); for more information (but
slower execution) use match (similar to the regular expression exec method).

Example The following example prints a message which depends on the success of the
test.

function testinput(re, str){
if (str.search(re) != -1)

midstrin g = " contains ";
else

midstrin g = " does not contain ";
document.write (str + midstring + re.source);

}

Method of String

Implemented in JavaScript 1.2

regexp Name of the regular expression. It can be a variable name or a literal.
428 Client-Side JavaScript Reference

String.slice
slice .

Extracts a section of a string and returns a new string.

Syntax slice(beginslice [, endSlice])

Parameters

Description slice extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.

slice extracts up to but not including endSlice . string.slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to last
character in the string.

Example The following example uses slice to create a new string.

<SCRIPT>
str1="The morning is upon us. "
str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>

This writes:

morning is upon

Method of String

Implemented in JavaScript 1.0, NES 2.0

beginSlice The zero-based index at which to begin extraction.

endSlice The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.
Chapter 1, Objects, Methods, and Properties 429

String.small
small .

Causes a string to be displayed in a small font, as if it were in a <SMALL> tag.

Syntax small()

Parameters None

Description Use the small method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big , String.fontsize

split .

Splits a String object into an array of strings by separating the string into
substrings.

Syntax split([separator][, limit])

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
430 Client-Side JavaScript Reference

String.split
Parameters

Description The split method returns the new array.

When found, separator is removed from the string and the substrings are
returned in an array. If separator is omitted, the array contains one element
consisting of the entire string.

In JavaScript 1.2, split has the following additions:

• It can take a regular expression argument, as well as a fixed string, by
which to split the object string. If separator is a regular expression, any
included parenthesis cause submatches to be included in the returned
array.

• It can take a limit count so that the resulting array does not include trailing
empty elements.

• If you specify LANGUAGE="JavaScript1.2" in the SCRIPT tag,
string.split(" ") splits on any run of 1 or more white space characters
including spaces, tabs, line feeds, and carriage returns. For this behavior,
LANGUAGE="JavaScript1.2" must be specified in the <SCRIPT> tag.

Examples Example 1. The following example defines a function that splits a string into
an array of strings using the specified separator. After splitting the string, the
function displays messages indicating the original string (before the split), the
separator used, the number of elements in the array, and the individual array
elements.

function splitString (stringToSplit,separator) {
arrayOfStrings = stringToSplit.split(separator)
document.write ('<P>The original string is: "' + stringToSplit + '"')
document.write ('
The separator is: "' + separator + '"')
document.write ("
The array ha s " + arrayOfStrings.length + " elements: ")

for (var i=0; i < arrayOfStrings.length; i++) {
document.write (arrayOfStrings[i] + " / ")

}
}

separator Specifies the character to use for separating the string. The separator is
treated as a string. If separator is omitted, the array returned contains
one element consisting of the entire string.

limit Integer specifying a limit on the number of splits to be found.
Chapter 1, Objects, Methods, and Properties 431

String.split
var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"

var space=" "
var comma=","

splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)

This example produces the following output:

The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in / it.
/

The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /

The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct / Nov
/ Dec /

Example 2. Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">
str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>

Using LANGUAGE="JavaScript1.2" , this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScript1.2" , this script splits only on single space
characters, producing

"She", "sells" , , , , "seashells", "by" , , , "the", "seashore"
432 Client-Side JavaScript Reference

String.strike
Example 3. In the following example, split looks for 0 or more spaces
followed by a semicolon followed by 0 or more spaces and, when found,
removes the spaces from the string. nameList is the array returned as a result
of split .

<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, split looks for 0 or more spaces in a
string and returns the first 3 splits that it finds.

<SCRIPT LANGUAGE="JavaScript1.2">
myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
document.write(splits)
</SCRIPT>

This script displays the following:

["Hello", "World.", "How"]

See also String.charAt , String.indexOf , String.lastIndexOf

strike .

Causes a string to be displayed as struck-out text, as if it were in a <STRIKE>
tag.

Syntax strike()

Parameters None

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 433

String.sub
Description Use the strike method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink , String.bold , String.italics

sub .

Causes a string to be displayed as a subscript, as if it were in a <SUB> tag.

Syntax sub()

Parameters None

Description Use the sub method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to generate the HTML.

Method of String

Implemented in JavaScript 1.0, NES 2.0
434 Client-Side JavaScript Reference

String.substr
Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is wha t a " + superText.sup() + " looks like.")
document.write("<P>This is wha t a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sup

substr .

Returns the characters in a string beginning at the specified location through
the specified number of characters.

Syntax substr(start [, length])

Parameters

Description start is a character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. substr begins
extracting characters at start and collects length number of characters.

If start is positive and is the length of the string or longer, substr returns no
characters.

If start is negative, substr uses it as a character index from the end of the
string. If start is negative and abs(start) is larger than the length of the
string, substr uses 0 is the start index.

If length is 0 or negative, substr returns no characters. If length is omitted,
start extracts characters to the end of the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

start Location at which to begin extracting characters.

length The number of characters to extract
Chapter 1, Objects, Methods, and Properties 435

String.substring
Example Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">

str = "abcdefghij"
document.writeln("(1,2): ", str.substr(1,2))
document.writeln("(-2,2): ", str.substr(-2,2))
document.writeln("(1): ", str.substr(1))
document.writeln("(-20, 2): ", str.substr(1,20))
document.writeln("(20, 2): ", str.substr(20,2))

</SCRIPT>

This script displays:

(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also substring

substring .

Returns a subset of a String object.

Syntax substring(indexA , indexB)

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

indexA An integer between 0 and 1 less than the length of the string.

indexB An integer between 0 and 1 less than the length of the string.
436 Client-Side JavaScript Reference

String.substring
Description substring extracts characters from indexA up to but not including indexB . In
particular:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is greater than stringName.length , indexB is treated as if it
were stringName.length .

• If indexA equals indexB , substring returns an empty string.

• If indexB is omitted, indexA extracts characters to the end of the string.

In JavaScript 1.2, using LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB , JavaScript produces a runtime error (out
of memory).

In JavaScript 1.2, without LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB , JavaScript returns a substring beginning
with indexB and ending with indexA - 1 .

Examples Example 1. The following example uses substring to display characters from
the string "Netscape" :

var anyString="Netscape"

// Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
// Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
// Displays "Netscap"
document.write(anyString.substring(0,7))
// Displays "Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))
Chapter 1, Objects, Methods, and Properties 437

String.sup
Example 2. The following example replaces a substring within a string. It will
replace both individual characters and substrings. The function call at the end
of the example changes the string "Brave New World" into "Brave New Web" .

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS

for (var i=0; i<fullS.length; i++) {
if (fullS.substring(i,i+oldS.length) == oldS) {

fullS = fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
}

}
return fullS

}

replaceString("World","Web","Brave New World")

Example 3. In JavaScript 1.2, using LANGUAGE="JavaScript1.2" , the
following script produces a runtime error (out of memory).

<SCRIPT LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);
document.write(str.substring(3,0);
</SCRIPT>

Without LANGUAGE="JavaScript1.2" , the above script prints the following:

Net Net

In the second write , the index numbers are swapped.

See also substr

sup .

Causes a string to be displayed as a superscript, as if it were in a <SUP> tag.

Syntax sup()

Parameters None

Description Use the sup method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to generate the HTML.

Method of String

Implemented in JavaScript 1.0, NES 2.0
438 Client-Side JavaScript Reference

String.toLowerCase
Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is wha t a " + superText.sup() + " looks like.")
document.write("<P>This is wha t a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sub

toLowerCase .

Returns the calling string value converted to lowercase.

Syntax toLowerCase()

Parameters None

Description The toLowerCase method returns the value of the string converted to
lowercase. toLowerCase does not affect the value of the string itself.

Examples The following example displays the lowercase string "alphabet" :

var upperText="ALPHABET"
document.write(upperText.toLowerCase())

See also String.toUpperCase

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 439

String.toSource
toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in String object, toSource returns the following string
indicating that the source code is not available:

function String() {
[native code]

}

• For instances of String or string literals, toSource returns a string
representing the source code.

This method is usually called internally by JavaScript and not explicitly in code.

toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description The String object overrides the toString method of the Object object; it
does not inherit Object.toString . For String objects, the toString
method returns a string representation of the object.

Examples The following example displays the string value of a String object:

x = new String("Hello world");
alert(x.toString()) // Displays "Hello world"

See also Object.toString

Method of String

Implemented in JavaScript 1.3

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
440 Client-Side JavaScript Reference

String.toUpperCase
toUpperCase .

Returns the calling string value converted to uppercase.

Syntax toUpperCase()

Parameters None

Description The toUpperCase method returns the value of the string converted to
uppercase. toUpperCase does not affect the value of the string itself.

Examples The following example displays the string "ALPHABET":

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

See also String.toLowerCase

valueOf .

Returns the primitive value of a String object.

Syntax valueOf()

Parameters None

Description The valueOf method of String returns the primitive value of a String object
as a string data type. This value is equivalent to String.toString .

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new String("Hello world");
alert(x.valueOf()) // Displays "Hello world"

See also String.toString , Object.valueOf

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 441

Style
Style
An object that specifies the style of HTML elements.

Created by Any of the following properties or methods of the document object:

• document.classes

• document.contextual

• document.ids

• document.tags

Description The Style object lets you implement dynamic HTML style sheets in JavaScript.
The methods and properties of the Style object implement the cascading style
sheet style properties of HTML in JavaScript.

For a complete description of style sheets, see Dynamic HTML in Netscape
Communicator.

Property
Summary

Client-side object

Implemented in JavaScript 1.2

Property Description

align Specifies the alignment of an HTML element within its
parent.

backgroundColor Specifies a solid background color for an element.

backgroundImage Specifies a background image for an HTML element.

borderBottomWidth Specifies the width of the bottom border of an HTML
element.

borderColor Specifies the color of the border of an HTML element.

borderLeftWidth Specifies the width of the left border of an HTML element.

borderRightWidth Specifies the width of the right border of an HTML element.

borderStyle Specifies the style of border, such as solid or double,
around a block-level HTML element.

borderTopWidth Specifies the width of the top border of an HTML element.

clear Specifies the sides of an HTML element that allow floating
elements.

color Specifies the color of the text in an HTML element.
442 Client-Side JavaScript Reference

Style
display Overrides the usual display of an element and specifies
whether the element appears in line, as a block-level
element, or as a block-level list item.

fontFamily Specifies the font family, such as Helvetica or Arial, for an
HTML text element.

fontSize Specifies the font size for an HTML text element.

fontStyle Specifies the style of the font of an HTML element.

fontWeight Specifies the weight of the font of an HTML element.

lineHeight Specifies the distance between the baselines of two
adjacent lines of block-level type.

listStyleType Specifies the style of bullet displayed for list items.

marginBottom Specifies the minimal distance between the bottom of an
HTML element and the top of an adjacent element.

marginLeft Specifies the minimal distance between the left side of an
HTML element and the right side of an adjacent element.

marginRight Specifies the minimal distance between the right side of an
HTML element and the left side of an adjacent element.

marginTop Specifies the minimal distance between the top of an HTML
element and the bottom of an adjacent element.

paddingBottom Specifies how much space to insert between the bottom of
an element and its content, such as text or an image.

paddingLeft Specifies how much space to insert between the left side of
an element and its content, such as text or an image.

paddingRight Specifies how much space to insert between the right side
of an element and its content, such as text or an image.

paddingTop Specifies how much space to insert between the top of an
element and its content, such as text or an image.

textAlign Specifies the alignment of an HTML block-level text
element.

textDecoration Specifies special effects, such as blinking, strike-outs, and
underlines, added to an HTML text element.

textIndent Specifies the length of indentation appearing before the
first formatted line of a block-level HTML text element.

Property Description
Chapter 1, Objects, Methods, and Properties 443

Style.align
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

align .

Specifies the alignment of an HTML element within its parent.

Syntax styleObject .align = {left | right | none}

Parameters

Do not confuse align with textAlign , which specifies the alignment of the
content of text elements.

The align property is a reflection of the cascading style sheet float
property.

textTransform Specifies the case of an HTML text element.

whiteSpace Specifies whether or not white space within an HTML
element should be collapsed.

width Specifies the width of a block-level HTML element.

Property Description

Method Description

borderWidths Specifies the width of the borders of an HTML element.

margins Specifies the minimal distance between the sides of an HTML
element and the sides of adjacent elements.

paddings Specifies how much space to insert between the sides of an
element and its content, such as text or an image.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.
444 Client-Side JavaScript Reference

Style.backgroundColor
backgroundColor .

Specifies a solid background color for an element.

Syntax styleObject .backgroundColor = colorValue

Parameters

The backgroundColor property is a reflection of the cascading style sheet
background-color property.

backgroundImage .

Specifies a background image for an HTML element.

Syntax styleObject .backgroundImage = url

Parameters

The backgroundImage property is a reflection of the cascading style sheet
background-image property.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

colorValue A string evaluating to a color value, as described in Appendix B,
“Color Values.”

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

url A string evaluating to either a full URL or a partial URL relative to
the source of the style sheet.
Chapter 1, Objects, Methods, and Properties 445

Style.borderBottomWidth
borderBottomWidth .

Specifies the width of the bottom border of an HTML element.

Syntax styleObject .borderBottomWidth = length

Parameters

The borderBottomWidth property is a reflection of the cascading style sheet
border-bottom-width property.

See also Style.borderLeftWidth , Style.borderRightWidth ,
Style.borderTopWidth , Style.borderWidths

borderColor .

Specifies the color of the border of an HTML element.

Syntax styleObject .borderColor = {none | colorValue }

Parameters

The borderColor property is a reflection of the cascading style sheet
border-color property.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

colorValue A string evaluating to a color value, as described in Appendix B,
“Color Values.”
446 Client-Side JavaScript Reference

Style.borderLeftWidth
borderLeftWidth .

Specifies the width of the left border of an HTML element.

Syntax styleObject .borderLeftWidth = length

Parameters

The borderLeftWidth property is a reflection of the cascading style sheet
border-left-width property.

See also Style.borderBottomWidth , Style.borderRightWidth ,
Style.borderTopWidth , Style.borderWidths

borderRightWidth .

Specifies the width of the right border of an HTML element.

Syntax styleObject .borderRightWidth = length

Parameters

The borderRightWidth property is a reflection of the cascading style sheet
border-right-width property.

See also Style.borderBottomWidth , Style.borderLeftWidth ,
Style.borderTopWidth , Style.borderWidths

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .
Chapter 1, Objects, Methods, and Properties 447

Style.borderStyle
borderStyle .

Specifies the style of border, such as solid or double, around a block-level
HTML element.

Syntax styleObject .borderStyle = styleType

Parameters

You must also specify a border width for the border to be visible.

The borderStyle property is a reflection of the cascading style sheet
border-style property.

borderTopWidth .

Specifies the width of the top border of an HTML element.

Syntax styleObject .borderTopWidth = length

Parameters

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

styleType A string evaluating to any of the following keywords:

• none

• solid

• double

• inset

• outset

• groove

• ridge

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .
448 Client-Side JavaScript Reference

Style.borderWidths
The borderTopWidth property is a reflection of the cascading style sheet
border-top-width property.

See also Style.borderBottomWidth , Style.borderLeftWidth ,
Style.borderRightWidth , Style.borderWidths

borderWidths .

Specifies the width of the borders of an HTML element.

Syntax borderWidths(top, right, bottom, left)

Parameters

Description The borderWidths method is a convenience shortcut for setting all the
border width properties.

See also Style.borderBottomWidth , Style.borderLeftWidth ,
Style.borderRightWidth , Style.borderTopWidth

Method of Style

Implemented in JavaScript 1.2

top A string specifying the value of the Style.borderTopWidth
property.

right A string specifying the value of the Style.borderRightWidth
property.

bottom A string specifying the value of the Style.borderBottomWidth
property.

left A string specifying the value of the Style.borderLeftWidth
property.
Chapter 1, Objects, Methods, and Properties 449

Style.clear
clear .

Specifies the sides of an HTML element that allow floating elements.

Syntax styleObject .clear = {left | right | both | none}

Parameters

The clear property is a reflection of the cascading style sheet clear
property.

color .

Specifies the color of the text in an HTML element.

Syntax styleObject .color = colorValue

Parameters

The color property is a reflection of the cascading style color property.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

colorValue A string evaluating to a color value, as described in Appendix B,
“Color Values.”
450 Client-Side JavaScript Reference

Style.display
display .

Overrides the usual display of an element and specifies whether the element
appears in line, as a block-level element, or as a block-level list item.

Syntax styleObject .display = styleType

Parameters

The display property is a reflection of the cascading style display property.

fontFamily .

Specifies the font family, such as Helvetica or Arial, for an HTML text element.

Syntax styleObject .fontFamily = { specificFamily | genericFamily }

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

styleType A string evaluating to any of the following keywords:

• none

• block

• inline

• list-item

Property of Style

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 451

Style.fontSize
Parameters

The fontFamily property is a reflection of the cascading style sheet
font-family property. The genericFamily keywords are available for all
platforms, but the specific font displayed varies on each platform.

You can mix the specificFamily and genericFamily keywords in the same value.
For example, the following code displays text in Helvetica if that font is
available; otherwise, the text displays in a sans-serif font determined by the
operating system:

document.tags.H1.fontFamily = "Helvetica, sans-serif"

You can also link to a font definition file and download it when a browser
loads the web page, guaranteeing that all the fonts are available on a user’s
system. See Dynamic HTML in Netscape Communicator.

fontSize .

Specifies the font size for an HTML text element.

Syntax styleObject .fontSize =
{ absoluteSize | relativeSize | length | percentage }

styleObject A Style object.

specificFamily A string evaluating to a comma-separated list of specific font
families, such as Helvetica or Arial .

genericFamily A string evaluating to any of the following keywords:

• serif

• sans-serif

• cursive

• monospace

• fantasy

Property of Style

Implemented in JavaScript 1.2
452 Client-Side JavaScript Reference

Style.fontStyle
Parameters

The fontSize property is a reflection of the cascading style sheet
font-size property. By default, the initial value is medium.

fontStyle .

Specifies the style of the font of an HTML element.

Syntax styleObject .fontStyle = styleType

Parameters

styleObject A Style object.

absoluteSize A string evaluating to any of the following keywords:

• xx-small

• x-small

• small

• medium

• large

• x-large

• xx-large

relativeSize A string evaluating to a size relative to the size of the parent
element, indicated by either of the following keywords:

• smaller

• larger

length A string evaluating to a size followed by a unit of measurement; for
example, 18pt .

percentage A string evaluating to a percent of the size of the parent element;
for example, 50%.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

styleType A string evaluating to either of the following keywords:

• normal

• italic
Chapter 1, Objects, Methods, and Properties 453

Style.fontWeight
The fontStyle property is a reflection of the cascading style sheet
font-style property.

fontWeight .

Specifies the weight of the font of an HTML element.

Syntax styleObject .fontWeight = { absolute | relative | numeric }

Parameters

The fontWeight property is a reflection of the cascading style sheet
font-weight property.

lineHeight .

Specifies the distance between the baselines of two adjacent lines of block-level
type.

Syntax styleObject .lineHeight = { number | length | percentage | normal}

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

absolute A string evaluating to either of the following keywords:

• normal

• bold

relative A string evaluating to a weight relative to the weight of the parent
element, indicated by either of the following keywords:

• bolder

• lighter

numeric A string evaluating to a numeric value between 100 and 900, where
100 indicates the lightest weight and 900 indicates the heaviest
weight.

Property of Style

Implemented in JavaScript 1.2
454 Client-Side JavaScript Reference

Style.lineHeight
Parameters

The lineHeight property is a reflection of the cascading style sheet
line-height property.

When you set the lineHeight property by specifying number , Navigator
calculates the line height by multiplying the font size of the current element by
number . For example, if lineHeight is set to 1.2 in a paragraph using a 10-
point font, the line height is 12 points.

When you set lineHeight with number , children of the current paragraph
inherit the line height factor; when you set lineHeight with length or
percentage , children inherit the resulting value.

styleObject A Style object.

number A string evaluating to a size without a unit of measurement; for
example, 1.2 .

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

normal The string normal, indicating that the line height is determined
automatically by Navigator.
Chapter 1, Objects, Methods, and Properties 455

Style.listStyleType
listStyleType .

Specifies the style of bullet displayed for list items.

Syntax styleObject .listStyleType = styleType

Parameters

The listStyleType property is a reflection of the cascading style sheet
list-style-type property.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

styleType A string evaluating to any of the following keywords:

• disc

• circle

• square

• decimal

• lower-roman

• upper-roman

• lower-alpha

• upper-alpha

• none
456 Client-Side JavaScript Reference

Style.marginBottom
marginBottom .

Specifies the minimal distance between the bottom of an HTML element and
the top of an adjacent element.

Syntax styleObject .marginBottom = { length | percentage | auto}

Parameters

The marginBottom property is a reflection of the cascading style sheet
margin-bottom property.

See also Style.marginLeft , Style.marginRight , Style.marginTop ,
Style.margins

marginLeft .

Specifies the minimal distance between the left side of an HTML element and
the right side of an adjacent element.

Syntax styleObject .marginLeft = { length | percentage | auto}

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

auto The string auto, indicating that the margin is determined
automatically by Navigator.

Property of Style

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 457

Style.marginRight
Parameters

The marginLeft property is a reflection of the cascading style sheet
margin-left property.

See also Style.marginBottom , Style.marginRight , Style.marginTop ,
Style.margins

marginRight .

Specifies the minimal distance between the right side of an HTML element and
the left side of an adjacent element.

Syntax styleObject .marginRight = { length | percentage | auto}

Parameters

The marginRight property is a reflection of the cascading style sheet
margin-right property.

See also Style.marginBottom , Style.marginLeft , Style.marginTop ,
Style.margins

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

auto The string auto, indicating that the margin is determined
automatically by Navigator.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

auto The string auto, indicating that the margin is determined
automatically by Navigator.
458 Client-Side JavaScript Reference

Style.margins
margins .

Specifies the minimal distance between the sides of an HTML element and the
sides of adjacent elements.

Syntax margins(top, right, bottom, left)

Parameters

Description The margins method is a convenience shortcut for setting all the margin
properties.

See also Style.marginBottom , Style.marginLeft , Style.marginRight ,
Style.marginTop

Method of Style

Implemented in JavaScript 1.2

top A string specifying the value of the Style.marginTop property.

right A string specifying the value of the Style.marginRight
property.

bottom A string specifying the value of the Style.marginBottom
property.

left A string specifying the value of the Style.marginLeft property.
Chapter 1, Objects, Methods, and Properties 459

Style.marginTop
marginTop .

Specifies the minimal distance between the top of an HTML element and the
bottom of an adjacent element.

Syntax styleObject .marginTop = { length | percentage | auto}

Parameters

The marginTop property is a reflection of the cascading style sheet
margin-top property.

See also Style.marginBottom , Style.marginLeft , Style.marginRight ,
Style.margins

paddingBottom .

Specifies how much space to insert between the bottom of an element and its
content, such as text or an image.

Syntax styleObject .paddingBottom = { length | percentage }

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

auto The string auto, indicating that the margin is determined
automatically by Navigator.

Property of Style

Implemented in JavaScript 1.2
460 Client-Side JavaScript Reference

Style.paddingLeft
Parameters

The paddingBottom property is a reflection of the cascading style sheet
padding-bottom property.

See also Style.paddingLeft , Style.paddingRight , Style.paddingTop ,
Style.paddings

paddingLeft .

Specifies how much space to insert between the left side of an element and its
content, such as text or an image.

Syntax styleObject .paddingLeft = { length | percentage }

Parameters

The paddingLeft property is a reflection of the cascading style sheet
padding-left property.

See also Style.paddingBottom , Style.paddingRight , Style.paddingTop ,
Style.paddings

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.
Chapter 1, Objects, Methods, and Properties 461

Style.paddingRight
paddingRight .

Specifies how much space to insert between the right side of an element and its
content, such as text or an image.

Syntax styleObject .paddingRight = { length | percentage }

Parameters

The paddingRight property is a reflection of the cascading style sheet
padding-right property.

See also Style.paddingBottom , Style.paddingLeft , Style.paddingTop ,
Style.paddings

paddings .

Specifies how much space to insert between the sides of an element and its
content, such as text or an image.

Syntax paddings(top, right, bottom, left)

Parameters

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

Method of Style

Implemented in JavaScript 1.2

top A string specifying the value of the Style.paddingTop property.

right A string specifying the value of the Style.paddingRight
property.

bottom A string specifying the value of the Style.paddingBottom
property.

left A string specifying the value of the Style.paddingLeft
property.
462 Client-Side JavaScript Reference

Style.paddingTop
Description The paddings method is a convenience shortcut for setting all the padding
properties.

See also Style.paddingBottom , Style.paddingLeft , Style.paddingRight ,
Style.paddingTop

paddingTop .

Specifies how much space to insert between the top of an element and its
content, such as text or an image.

Syntax styleObject .paddingTop = { length | percentage }

Parameters

The paddingTop property is a reflection of the cascading style sheet
padding-top property.

See also Style.paddingBottom , Style.paddingLeft , Style.paddingRight ,
Style.paddings

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.
Chapter 1, Objects, Methods, and Properties 463

Style.textAlign
textAlign .

Specifies the alignment of an HTML block-level text element.

Syntax styleObject .textAlign = alignment

Parameters

Do not confuse textAlign with align , which specifies the alignment of an
HTML element within its parent.

The textAlign property is a reflection of the cascading style sheet
text-align property.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

alignment A string evaluating to any of the following keywords:

• left

• right

• center

• justify
464 Client-Side JavaScript Reference

Style.textDecoration
textDecoration .

Specifies special effects, such as blinking, strike-outs, and underlines, added to
an HTML text element.

Syntax styleObject .textDecoration = decoration

Parameters

The textDecoration property is a reflection of the cascading style sheet
text-decoration property.

textIndent .

Specifies the length of indentation appearing before the first formatted line of a
block-level HTML text element.

Syntax styleObject .textIndent = { length | percentage }

Parameters

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

decoration A string evaluating to any of the following keywords:

• none

• underline

• line-through

• blink

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 18pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.
Chapter 1, Objects, Methods, and Properties 465

Style.textTransform
The textIndent property is a reflection of the cascading style sheet
text-indent property.

textTransform .

Specifies the case of an HTML text element.

Syntax styleObject .textTransform = transformation

Parameters

The textTransform property is a reflection of the cascading style sheet
text-transform property.

whiteSpace .

Specifies whether or not white space within an HTML element should be
collapsed.

Syntax styleObject .whiteSpace = {normal | pre}

Parameters

The whiteSpace property is a reflection of the cascading style sheet
white-space property.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

transformation A string evaluating to any of the following keywords:

• none

• capitalize

• uppercase

• lowercase

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.
466 Client-Side JavaScript Reference

Style.width
width .

Specifies the width of a block-level HTML element.

Syntax styleObject .width = { length | percentage | auto}

Parameters

The width property is a reflection of the cascading style sheet width
property.

The Style.marginLeft and Style.marginRight properties take
precedence over the Style.width property. For example, if marginLeft is
set to 25%, marginRight is set to 10%, and width is set to 100%, Navigator
ignores the width value and uses 65% for the width setting.

Property of Style

Implemented in JavaScript 1.2

styleObject A Style object.

length A string evaluating to a size followed by a unit of measurement; for
example, 10pt .

percentage A string evaluating to a percentage of the parent element’s width;
for example, 20%.

auto The string auto, indicating that the width is determined
automatically by Navigator.
Chapter 1, Objects, Methods, and Properties 467

Submit
Submit
A submit button on an HTML form. A submit button causes a form to be
submitted.

Created by The HTML INPUT tag, with "submit" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates an appropriate Submit object
and puts it in the elements array of the corresponding Form object. You
access a Submit object by indexing this array. You can index the array either
by number or, if supplied, by using the value of the NAME attribute.

Event handlers • onBlur

• onClick

• onFocus

Security Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

Description A Submit object on a form looks as follows:

A Submit object is a form element and must be defined within a FORM tag.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods

JavaScript 1.2: added handleEvent method
468 Client-Side JavaScript Reference

Submit
Clicking a submit button submits a form to the URL specified by the form’s
action property. This action always loads a new page into the client; it may be
the same as the current page, if the action so specifies or is not specified.

The submit button’s onClick event handler cannot prevent a form from being
submitted; instead, use the form’s onSubmit event handler or use the submit
method instead of a Submit object. See the examples for the Form object.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples The following example creates a Submit object called submitButton . The text
“Done” is displayed on the face of the button.

<INPUT TYPE="submit" NAME="submitButton" VALUE="Done">

See also the examples for the Form.

See also Button , Form, Reset , Form.submit , onSubmit

Property Description

form Specifies the form containing the Submit object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the VALUE attribute.

Method Description

blur Removes focus from the submit button.

click Simulates a mouse-click on the submit button.

focus Gives focus to the submit button.

handleEvent Invokes the handler for the specified event.
Chapter 1, Objects, Methods, and Properties 469

Submit.blur
blur .

Removes focus from the submit button.

Syntax blur()

Parameters None

See also Submit.focus

click .

Simulates a mouse-click on the submit button, but does not trigger an object’s
onClick event handler.

Syntax click()

Parameters None

focus .

Navigates to the submit button and gives it focus.

Syntax focus()

Parameters None

See also Submit.blur

Method of Submit

Implemented in JavaScript 1.0

Method of Submit

Implemented in JavaScript 1.0

Method of Submit

Implemented in JavaScript 1.0
470 Client-Side JavaScript Reference

Submit.form
form .

An object reference specifying the form containing the submit button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples The following example shows a form with several elements. When the user
clicks button2 , the function showElements displays an alert dialog box
containing the names of each element on the form myForm.

<SCRIPT>
function showElements(theForm) {

str = "Form Elements of for m " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</SCRIPT>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="submit" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

The alert dialog box displays the following text:

Form Elements of form myForm:
text1
button1
button2

See also Form

Property of Submit

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 471

Submit.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

name .

A string specifying the submit button’s name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Do not confuse the name property with the label displayed on the Submit
button. The value property specifies the label for this button. The name
property is not displayed on the screen; it is used to refer programmatically to
the button.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Submit element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Method of Submit

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.

Property of Submit

Implemented in JavaScript 1.0
472 Client-Side JavaScript Reference

Submit.type
Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

See also Submit.value

type .

For all Submit objects, the value of the type property is "submit" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the submit button’s VALUE attribute.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of Submit

Read-only

Implemented in JavaScript 1.1

Property of Submit

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 473

Submit.value
Description When a VALUE attribute is specified in HTML, the value property is that string
and is displayed on the face of the button. When a VALUE attribute is not
specified in HTML, the value property for the button is the string "Submit
Query."

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
button.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("helpButton.value is " +

document.valueTest.helpButton.value + "
")
msgWindow.document.close()

}

This example displays the following values:

Query Submit
Reset
Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

See also Submit.name
474 Client-Side JavaScript Reference

Chapter 1, Objects, Methods, and Properties 475

sun

sun
A top-level object used to access any Java class in the package sun.* .

Created by The sun object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The sun object is a convenience synonym for the property Packages.sun .

See also Packages , Packages.sun

Core object

Implemented in JavaScript 1.1, NES 2.0

Text
Text
A text input field on an HTML form. The user can enter a word, phrase, or
series of numbers in a text field.

Created by The HTML INPUT tag, with "text" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate Text objects and
puts these objects in the elements array of the corresponding Form object.
You access a Text object by indexing this array. You can index the array either
by number or, if supplied, by using the value of the NAME attribute.

To define a Text object, use standard HTML syntax with the addition of
JavaScript event handlers.

Event handlers • onBlur

• onChange

• onFocus

• onSelect

Description A Text object on a form looks as follows:

A Text object is a form element and must be defined within a FORM tag.

Text objects can be updated (redrawn) dynamically by setting the value
property (this.value).

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property

JavaScript 1.2: added handleEvent method
476 Client-Side JavaScript Reference

Text
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example creates a Text object that is 25 characters
long. The text field appears immediately to the right of the words “Last name:”.
The text field is blank when the form loads.

Last name: <INPUT TYPE="text" NAME="last_name" VALUE="" SIZE=25>

Example 2. The following example creates two Text objects on a form. Each
object has a default value. The city object has an onFocus event handler that
selects all the text in the field when the user tabs to that field. The state object
has an onChange event handler that forces the value to uppercase.

<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Anchorage"

SIZE="20" onFocus="this.select()">
State: <INPUT TYPE="text" NAME="state" VALUE="AK" SIZE="2"

onChange="this.value=this.value.toUpperCase()">
</FORM>

See also the examples for the onBlur , onChange , onFocus , and onSelect .

See also Text , Form, Password , String , Textarea

Property Description

defaultValue Reflects the VALUE attribute.

form Specifies the form containing the Text object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Text object’s field.

Method Description

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the object.
Chapter 1, Objects, Methods, and Properties 477

Text.blur
blur .

Removes focus from the text field.

Syntax blur()

Parameters None

Examples The following example removes focus from the text element userText:

userText.blur()

This example assumes that the text element is defined as

<INPUT TYPE="text" NAME="userText">

See also Text.focus , Text.select

defaultValue .

A string indicating the default value of a Text object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The initial value of defaultValue reflects the value of the VALUE attribute.
Setting defaultValue programmatically overrides the initial setting.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

Method of Text

Implemented in JavaScript 1.0

Property of Text

Implemented in JavaScript 1.0
478 Client-Side JavaScript Reference

Text.focus
Examples The following function evaluates the defaultValue property of objects on the
surfCity form and displays the values in the msgWindow window:

function defaultGetter() {
msgWindow=window.open("")
msgWindow.document.write("hidden.defaultValue is " +

document.surfCity.hiddenObj.defaultValue + "
")
msgWindow.document.write("password.defaultValue is " +

document.surfCity.passwordObj.defaultValue + "
")
msgWindow.document.write("text.defaultValue is " +

document.surfCity.textObj.defaultValue + "
")
msgWindow.document.write("textarea.defaultValue is " +

document.surfCity.textareaObj.defaultValue + "
")
msgWindow.document.close()

}

See also Text.value

focus .

Navigates to the text field and gives it focus.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a text field and give it focus. You can
then either programmatically enter a value in the field or let the user enter a
value. If you use this method without the select method, the cursor is
positioned at the beginning of the field.

Examples See example for select .

See also Text.blur , Text.select

Method of Text

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 479

Text.form
form .

An object reference specifying the form containing this object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples Example 1. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

Example 2. The following example shows a form with several elements. When
the user clicks button2 , the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of for m " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

Property of Text

Read-only

Implemented in JavaScript 1.0
480 Client-Side JavaScript Reference

Text.handleEvent
The alert dialog box displays the following text:

JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2

Example 3. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myTextObject .

document.myForm.myTextObject.form

See also Form

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

name .

A string specifying the name of this object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

Method of Text

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.

Property of Text

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 481

Text.select
If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same
form have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

select .

Selects the input area of the text field.

Syntax select()

Parameters None

Description Use the select method to highlight the input area of a text field. You can use
the select method with the focus method to highlight a field and position the
cursor for a user response. This makes it easy for the user to replace all the text
in the field.

Method of Text

Implemented in JavaScript 1.0
482 Client-Side JavaScript Reference

Text.type
Examples The following example uses an onClick event handler to move the focus to a
text field and select that field for changing:

<FORM NAME="myForm">
Last name: <INPUT TYPE="text" NAME="lastName" SIZE=20 VALUE="Pigman">

First name: <INPUT TYPE="text" NAME="firstName" SIZE=20 VALUE="Victoria">

<INPUT TYPE="button" VALUE="Change last name"

onClick="this.form.lastName.select();this.form.lastName.focus();">
</FORM>

See also Text.blur , Text.focus

type .

For all Text objects, the value of the type property is "text" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that reflects the VALUE attribute of the object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Property of Text

Read-only

Implemented in JavaScript 1.1

Property of Text

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 483

Text.value
Description The value property is a string that initially reflects the VALUE attribute. This
string is displayed in the text field. The value of this property changes when a
user or a program modifies the field.

You can set the value property at any time. The display of the Text object
updates immediately when you set the value property.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("myText.value is " +

document.valueTest.myText.value + "
")
msgWindow.document.close()

}

This example displays the following:

submitButton.value is Query Submit
resetButton.value is Reset
myText.value is Stonefish are dangerous.

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="text" NAME="myText" VALUE="Stonefish are dangerous.">

See also Text.defaultValue
484 Client-Side JavaScript Reference

Textarea
Textarea
A multiline input field on an HTML form. The user can use a textarea field to
enter words, phrases, or numbers.

Created by The HTML TEXTAREA tag. For a given form, the JavaScript runtime engine
creates appropriate Textarea objects and puts these objects in the elements
array of the corresponding Form object. You access a Textarea object by
indexing this array. You can index the array either by number or, if supplied,
by using the value of the NAME attribute.

To define a text area, use standard HTML syntax with the addition of JavaScript
event handlers.

Event handlers • onBlur

• onChange

• onFocus

• onKeyDown

• onKeyPress

• onKeyUp

• onSelect

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property

JavaScript 1.2: added handleEvent method
Chapter 1, Objects, Methods, and Properties 485

Textarea
Description A Textarea object on a form looks as follows:

A Textarea object is a form element and must be defined within a FORM tag.

Textarea objects can be updated (redrawn) dynamically by setting the value
property (this.value).

To begin a new line in a Textarea object, you can use a newline character.
Although this character varies from platform to platform (Unix is \n , Windows
is \r , and Macintosh is \n), JavaScript checks for all newline characters before
setting a string-valued property and translates them as needed for the user’s
platform. You could also enter a newline character programmatically—one way
is to test the navigator.appVersion property to determine the current
platform, then set the newline character accordingly. See
navigator.appVersion for an example.
486 Client-Side JavaScript Reference

Textarea
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. The following example creates a Textarea object that is six rows
long and 55 columns wide. The textarea field appears immediately below the
word “Description:”. When the form loads, the Textarea object contains
several lines of data, including one blank line.

Description:

<TEXTAREA NAME="item_description" ROWS=6 COLS=55>
Our storage ottoman provides an attractive way to
store lots of CDs and videos--and it's versatile
enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 videos
in the drawer below.
</TEXTAREA>

Property Description

defaultValue Reflects the VALUE attribute.

form Specifies the form containing the Textarea object.

name Reflects the NAME attribute.

type Specifies that the object is a Textarea object.

value Reflects the current value of the Textarea object.

Method Description

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the object.
Chapter 1, Objects, Methods, and Properties 487

Textarea.blur
Example 2. The following example creates a string variable containing newline
characters for different platforms. When the user clicks the button, the
Textarea object is populated with the value from the string variable. The result
is three lines of text in the Textarea object.

<SCRIPT>
myString="This is line one.\nThis is line two.\rThis is line three."
</SCRIPT>
<FORM NAME="form1">
<INPUT TYPE="button" Value="Populate the textarea"
onClick="document.form1.textarea1.value=myString">

<P>
<TEXTAREA NAME="textarea1" ROWS=6 COLS=55></TEXTAREA>

See also Form, Password , String , Text

blur .

Removes focus from the object.

Syntax blur()

Parameters None

Examples The following example removes focus from the textarea element userText:

userText.blur()

This example assumes that the textarea is defined as

<TEXTAREA NAME="userText">
Initial text for the text area.
</TEXTAREA>

See also Textarea.focus , Textarea.select

Method of Textarea

Implemented in JavaScript 1.0
488 Client-Side JavaScript Reference

Textarea.defaultValue
defaultValue .

A string indicating the default value of a Textarea object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The initial value of defaultValue reflects the value specified between the
TEXTAREA start and end tags. Setting defaultValue programmatically overrides
the initial setting.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

Examples The following function evaluates the defaultValue property of objects on the
surfCity form and displays the values in the msgWindow window:

function defaultGetter() {
msgWindow=window.open("")
msgWindow.document.write("hidden.defaultValue is " +

document.surfCity.hiddenObj.defaultValue + "
")
msgWindow.document.write("password.defaultValue is " +

document.surfCity.passwordObj.defaultValue + "
")
msgWindow.document.write("text.defaultValue is " +

document.surfCity.textObj.defaultValue + "
")
msgWindow.document.write("textarea.defaultValue is " +

document.surfCity.textareaObj.defaultValue + "
")
msgWindow.document.close()

}

See also Textarea.value

Property of Textarea

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 489

Textarea.focus
focus .

Navigates to the textarea field and gives it focus.

Syntax focus()

Parameters None

Description Use the focus method to navigate to the textarea field and give it focus. You
can then either programmatically enter a value in the field or let the user enter
a value. If you use this method without the select method, the cursor is
positioned at the beginning of the field.

See also Textarea.blur , Textarea.select

Examples See example for Textarea.select .

form .

An object reference specifying the form containing this object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples Example 1. The following example shows a form with several elements. When
the user clicks button2 , the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of for m " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</script>

Method of Textarea

Implemented in JavaScript 1.0

Property of Textarea

Read-only

Implemented in JavaScript 1.0
490 Client-Side JavaScript Reference

Textarea.handleEvent
<FORM NAME="myForm">
Form name:<INPUT TYPE="textarea" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

The alert dialog box displays the following text:

JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2

Example 2. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myTextareaObject .

document.myForm.myTextareaObject.form

See also Form

handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see the Client-Side JavaScript Guide.

Method of Textarea

Implemented in JavaScript 1.2

event The name of an event for which the object has an event handler.
Chapter 1, Objects, Methods, and Properties 491

Textarea.name
name .

A string specifying the name of this object.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same
form have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Textarea

Implemented in JavaScript 1.0
492 Client-Side JavaScript Reference

Textarea.select
select .

Selects the input area of the object.

Syntax select()

Parameters None

Description Use the select method to highlight the input area of a textarea field. You can
use the select method with the focus method to highlight the field and
position the cursor for a user response. This makes it easy for the user to
replace all the text in the field.

Examples The following example uses an onClick event handler to move the focus to a
textarea field and select that field for changing:

<FORM NAME="myForm">
Last name: <INPUT TYPE="text" NAME="lastName" SIZE=20 VALUE="Pigman">

First name: <INPUT TYPE="text" NAME="firstName" SIZE=20 VALUE="Victoria">

Description:

<TEXTAREA NAME="desc" ROWS=3 COLS=40>An avid scuba diver.</TEXTAREA>

<INPUT TYPE="button" VALUE="Change description"

onClick="this.form.desc.select();this.form.desc.focus();">
</FORM>

See also Textarea.blur , Textarea.focus

type .

For all Textarea objects, the value of the type property is "textarea" . This
property specifies the form element’s type.

Method of Textarea

Implemented in JavaScript 1.0

Property of Textarea

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 493

Textarea.value
Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type i s " + document.form1.elements[i].type)

}

value .

A string that initially reflects the VALUE attribute.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description This string is displayed in the textarea field. The value of this property changes
when a user or a program modifies the field.

You can set the value property at any time. The display of the Textarea
object updates immediately when you set the value property.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("blurb.value is " +

document.valueTest.blurb.value + "
")
msgWindow.document.close()

}

This example displays the following:

submitButton.value is Query Submit
resetButton.value is Reset
blurb.value is Tropical waters contain all sorts of cool fish,
such as the harlequin ghost pipefish, dragonet, and cuttlefish.
A cuttlefish looks much like a football wearing a tutu and a mop.

Property of Textarea

Implemented in JavaScript 1.0
494 Client-Side JavaScript Reference

Textarea.value
The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<TEXTAREA NAME="blurb" rows=3 cols=60>
Tropical waters contain all sorts of cool fish,
such as the harlequin ghost pipefish, dragonet, and cuttlefish.
A cuttlefish looks much like a football wearing a tutu and a mop.
</TEXTAREA>

See also Textarea.defaultValue
Chapter 1, Objects, Methods, and Properties 495

window
window
Represents a browser window or frame. This is the top-level object for each
document , Location , and History object group.

Created by The JavaScript runtime engine creates a window object for each BODY or
FRAMESET tag. It also creates a window object to represent each frame defined
in a FRAME tag. In addition, you can create other windows by calling the
window.open method. For details on defining a window, see open .

Event handlers • onBlur

• onDragDrop

• onError

• onFocus

• onLoad

• onMove

• onResize

• onUnload

In JavaScript 1.1, on some platforms, placing an onBlur or onFocus event
handler in a FRAMESET tag has no effect.

Client-side object.

Implemented in JavaScript 1.0

JavaScript 1.1: added closed , history , and opener properties;
added blur , focus , and scroll methods; added onBlur ,
onError , and onFocus event handlers

JavaScript 1.2: added crypto , innerHeight , innerWidth ,
locationbar , menubar , offscreenBuffering ,
outerHeight , outerWidth , pageXOffset , pageYOffset ,
personalbar , screenX , screenY , scrollbars , statusbar ,
and toolbar properties; added atob , back , btoa ,
captureEvents , clearInterval , crypto.random ,
crypto.signText , disableExternalCapture ,
enableExternalCapture , find , forward , handleEvent ,
home, moveBy, moveTo, releaseEvents , resizeBy ,
resizeTo , routeEvent , scrollBy , scrollTo , setHotKeys ,
setInterval , setResizable , setZOptions , and stop
methods; deprecated scroll method
496 Client-Side JavaScript Reference

window
Description The window object is the top-level object in the JavaScript client hierarchy. A
window object can represent either a top-level window or a frame inside a
frameset. As a matter of convenience, you can think about a Frame object as a
window object that isn’t a top-level window. However, there is not really a
separate Frame class; these objects really are window objects, with a very few
minor differences:

• For a top-level window, the parent and top properties are references to
the window itself. For a frame, the top refers to the topmost browser
window, and parent refers to the parent window of the current window.

• For a top-level window, setting the defaultStatus or status property
sets the text appearing in the browser status line. For a frame, setting these
properties only sets the status line text when the cursor is over the frame.

• The close method is not useful for windows that are frames.

• To create an onBlur or onFocus event handler for a frame, you must set
the onblur or onfocus property and specify it in all lowercase (you cannot
specify it in HTML).

• If a FRAME tag contains SRC and NAME attributes, you can refer to that frame
from a sibling frame by using parent.frameName or
parent.frames[index] . For example, if the fourth frame in a set has
NAME="homeFrame", sibling frames can refer to that frame using
parent.homeFrame or parent.frames[3] .

For all windows, the self and window properties of a window object are
synonyms for the current window, and you can optionally use them to refer to
the current window. For example, you can close the current window by calling
the close method of either window or self . You can use these properties to
make your code more readable or to disambiguate the property reference
self.status from a form called status . See the properties and methods
listed below for more examples.

Because the existence of the current window is assumed, you do not have to
refer to the name of the window when you call its methods and assign its
properties. For example, status="Jump to a new location" is a valid
property assignment, and close() is a valid method call.
Chapter 1, Objects, Methods, and Properties 497

window
However, when you open or close a window within an event handler, you
must specify window.open() or window.close() instead of simply using
open() or close() . Due to the scoping of static objects in JavaScript, a call to
close() without specifying an object name is equivalent to
document.close() .

For the same reason, when you refer to the location object within an event
handler, you must specify window.location instead of simply using
location . A call to location without specifying an object name is equivalent
to document.location , which is a synonym for document.URL .

You can refer to a window’s Frame objects in your code by using the frames
array. In a window with a FRAMESET tag, the frames array contains an entry for
each frame.

A windows lacks event handlers until HTML that contains a BODY or FRAMESET
tag is loaded into it.

Property
Summary Property Description

closed Specifies whether a window has been closed.

crypto An object which allows access Navigator’s encryption
features.

defaultStatus Reflects the default message displayed in the window’s
status bar.

document Contains information on the current document, and
provides methods for displaying HTML output to the user.

frames An array reflecting all the frames in a window.

history Contains information on the URLs that the client has visited
within a window.

innerHeight Specifies the vertical dimension, in pixels, of the window’s
content area.

innerWidth Specifies the horizontal dimension, in pixels, of the
window’s content area.

length The number of frames in the window.

location Contains information on the current URL.

locationbar Represents the browser window’s location bar.

menubar Represents the browser window’s menu bar.
498 Client-Side JavaScript Reference

window
name A unique name used to refer to this window.

offscreenBuffering Specifies whether updates to a window are performed in
an offscreen buffer.

opener Specifies the window name of the calling document when
a window is opened using the open method

outerHeight Specifies the vertical dimension, in pixels, of the window’s
outside boundary.

outerWidth Specifies the horizontal dimension, in pixels, of the
window’s outside boundary.

pageXOffset Provides the current x-position, in pixels, of a window’s
viewed page.

pageYOffset Provides the current y-position, in pixels, of a window’s
viewed page.

parent A synonym for a window or frame whose frameset contains
the current frame.

personalbar Represents the browser window’s personal bar (also called
the directories bar).

screenX Specifies the x-coordinate of the left edge of a window.

screenY Specifies the y-coordinate of the top edge of a window.

scrollbars Represents the browser window’s scroll bars.

self A synonym for the current window.

status Specifies a priority or transient message in the window’s
status bar.

statusbar Represents the browser window’s status bar.

toolbar Represents the browser window’s toolbar.

top A synonym for the topmost browser window.

window A synonym for the current window.

Property Description
Chapter 1, Objects, Methods, and Properties 499

window
Method Summary

Method Description

alert Displays an Alert dialog box with a message and an
OK button.

atob Decodes a string of data which has been encoded
using base-64 encoding.

back Undoes the last history step in any frame within the
top-level window.

blur Removes focus from the specified object.

btoa Creates a base-64 encoded string.

captureEvents Sets the window or document to capture all events of
the specified type.

clearInterval Cancels a timeout that was set with the setInterval
method.

clearTimeout Cancels a timeout that was set with the setTimeout
method.

close Closes the specified window.

confirm Displays a Confirm dialog box with the specified
message and OK and Cancel buttons.

crypto.random Returns a pseudo-random string whose length is the
specified number of bytes.

crypto.signText Returns a string of encoded data which represents a
signed object.

disableExternalCapture Disables external event capturing set by the
enableExternalCapture method.

enableExternalCapture Allows a window with frames to capture events in
pages loaded from different locations (servers).

find Finds the specified text string in the contents of the
specified window.

focus Gives focus to the specified object.

forward Loads the next URL in the history list.

handleEvent Invokes the handler for the specified event.

home Points the browser to the URL specified in preferences
as the user's home page.
500 Client-Side JavaScript Reference

window
moveBy Moves the window by the specified amounts.

moveTo Moves the top-left corner of the window to the
specified screen coordinates.

open Opens a new web browser window.

print Prints the contents of the window or frame.

prompt Displays a Prompt dialog box with a message and an
input field.

releaseEvents Sets the window to release captured events of the
specified type, sending the event to objects further
along the event hierarchy.

resizeBy Resizes an entire window by moving the window’s
bottom-right corner by the specified amount.

resizeTo Resizes an entire window to the specified outer height
and width.

routeEvent Passes a captured event along the normal event
hierarchy.

scroll Scrolls a window to a specified coordinate.

scrollBy Scrolls the viewing area of a window by the specified
amount.

scrollTo Scrolls the viewing area of the window to the specified
coordinates, such that the specified point becomes the
top-left corner.

setHotKeys Enables or disables hot keys in a window which does
not have menus.

setInterval Evaluates an expression or calls a function every time
a specified number of milliseconds elapses.

setResizable Specifies whether a user is permitted to resize a
window.

setTimeout Evaluates an expression or calls a function once after a
specified number of milliseconds has elapsed.

setZOptions Specifies the z-order stacking behavior of a window.

stop Stops the current download.

Method Description
Chapter 1, Objects, Methods, and Properties 501

window
In addition, this object inherits the watch and unwatch methods from
Object .

Examples Example 1. Windows opening other windows. In the following example,
the document in the top window opens a second window, window2 , and
defines push buttons that open a message window, write to the message
window, close the message window, and close window2 . The onLoad and
onUnload event handlers of the document loaded into window2 display alerts
when the window opens and closes.

win1.html , which defines the frames for the first window, contains the
following code:

<HTML>
<HEAD>
<TITLE>window object example: Window 1</TITLE>
</HEAD>
<BODY BGCOLOR="antiquewhite">
<SCRIPT>
window2=open("win2.html","secondWindow",

"scrollbars=yes,width=250, height=400")
document.writeln("The first window has no name: "

+ window.name + "")
document.writeln("
The second window is named: "

+ window2.name + "")
</SCRIPT>
<FORM NAME="form1">
<P><INPUT TYPE="button" VALUE="Open a message window"

onClick = "window3=window.open('','messageWindow',
'scrollbars=yes,width=175, height=300')">

<P><INPUT TYPE="button" VALUE="Write to the message window"
onClick="window3.document.writeln('Hey there');
window3.document.close()">

<P><INPUT TYPE="button" VALUE="Close the message window"
onClick="window3.close()">

<P><INPUT TYPE="button" VALUE="Close window2"
onClick="window2.close()">

</FORM>
</BODY>
</HTML>
502 Client-Side JavaScript Reference

window
win2.html , which defines the content for window2 , contains the following
code:

<HTML>
<HEAD>
<TITLE>window object example: Window 2</TITLE>
</HEAD>
<BODY BGCOLOR="oldlace"

onLoad="alert('Message fro m ' + window.name + ': Hello, World.')"
onUnload="alert('Message fro m ' + window.name + ': I\'m closing')">

Some numbers
one
two
three
four
</BODY>
</HTML>

Example 2. Creating frames. The following example creates two windows,
each with four frames. In the first window, the first frame contains push buttons
that change the background colors of the frames in both windows.
framset1.html , which defines the frames for the first window, contains the
following code:

<HTML>
<HEAD>
<TITLE>Frames and Framesets: Window 1</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%"

onLoad="alert('Hello, World.')">
<FRAME SRC=framcon1.html NAME="frame1">
<FRAME SRC=framcon2.html NAME="frame2">
<FRAME SRC=framcon2.html NAME="frame3">
<FRAME SRC=framcon2.html NAME="frame4">
</FRAMESET>
</HTML>
Chapter 1, Objects, Methods, and Properties 503

window
framset2.html , which defines the frames for the second window, contains the
following code:

<HTML>
<HEAD>
<TITLE>Frames and Framesets: Window 2</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC=framcon2.html NAME="frame1">
<FRAME SRC=framcon2.html NAME="frame2">
<FRAME SRC=framcon2.html NAME="frame3">
<FRAME SRC=framcon2.html NAME="frame4">
</FRAMESET>
</HTML>

framcon1.html , which defines the content for the first frame in the first
window, contains the following code:

<HTML>
<BODY>
<H1>Frame1</H1>
<P>Click here

to load a different file into frame 2.
<SCRIPT>
window2=open("framset2.htm","secondFrameset")
</SCRIPT>
<FORM>
<P><INPUT TYPE="button" VALUE="Change frame2 to teal"

onClick="parent.frame2.document.bgColor='teal'">
<P><INPUT TYPE="button" VALUE="Change frame3 to slateblue"

onClick="parent.frames[2].document.bgColor='slateblue'">
<P><INPUT TYPE="button" VALUE="Change frame4 to darkturquoise"

onClick="top.frames[3].document.bgColor='darkturquoise'">

<P><INPUT TYPE="button" VALUE="window2.frame2 to violet"
onClick="window2.frame2.document.bgColor='violet'">

<P><INPUT TYPE="button" VALUE="window2.frame3 to fuchsia"
onClick="window2.frames[2].document.bgColor='fuchsia'">

<P><INPUT TYPE="button" VALUE="window2.frame4 to deeppink"
onClick="window2.frames[3].document.bgColor='deeppink'">

</FORM>
</BODY>
</HTML>
504 Client-Side JavaScript Reference

window.alert
framcon2.html , which defines the content for the remaining frames, contains
the following code:

<HTML>
<BODY>
<P>This is a frame.
</BODY>
</HTML>

framcon3.html , which is referenced in a Link object in framcon1.html ,
contains the following code:

<HTML>
<BODY>
<P>This is a frame. What do you think?
</BODY>
</HTML>

See also document , Frame

alert .

Displays an Alert dialog box with a message and an OK button.

Syntax alert(message)

Parameters

Description An alert dialog box looks as follows:

Use the alert method to display a message that does not require a user
decision. The message argument specifies a message that the dialog box
contains.

Method of window

Implemented in JavaScript 1.0

message A string.
Chapter 1, Objects, Methods, and Properties 505

window.atob
You cannot specify a title for an alert dialog box, but you can use the open
method to create your own alert dialog box. See open .

Examples In the following example, the testValue function checks the name entered by
a user in the Text object of a form to make sure that it is no more than eight
characters in length. This example uses the alert method to prompt the user
to enter a valid value.

function testValue(textElement) {
if (textElement.length > 8) {

alert("Please enter a name that is 8 characters or less")
}

}

You can call the testValue function in the onBlur event handler of a form’s
Text object, as shown in the following example:

Name: <INPUT TYPE="text" NAME="userName"
onBlur="testValue(userName.value)">

See also window.confirm , window.prompt

atob .

Decodes a string of data which has been encoded using base-64 encoding.

Syntax atob(encodedData)

Parameters

Description This method decodes a string of data which has been encoded using base-64
encoding. For example, the window.btoa method takes a binary string as a
parameter and returns a base-64 encoded string.

You can use the window.btoa method to encode and transmit data which
may otherwise cause communication problems, then transmit it and use the
window.atob method to decode the data again. For example, you can
encode, transmit, and decode characters such as ASCII values 0 through 31.

Method of window

Implemented in JavaScript 1.2

encodedData A string of data which has been created using base-64 encoding.
506 Client-Side JavaScript Reference

window.back
Examples The following example encodes and decodes the string “Hello, world”.

// encode a string
encodedData = btoa("Hello, world");

// decode the string
decodedData = atob(encodedData);

See also window.btoa

back .

Undoes the last history step in any frame within the top-level window;
equivalent to the user pressing the browser’s Back button.

Syntax back()

Parameters None

Description Calling the back method is equivalent to the user pressing the browser’s Back
button. That is, back undoes the last step anywhere within the top-level
window, whether it occurred in the same frame or in another frame in the tree
of frames loaded from the top-level window. In contrast, the history object's
back method backs up the current window or frame history one step.

For example, consider the following scenario. While in Frame A, you click the
Forward button to change Frame A’s content. You then move to Frame B and
click the Forward button to change Frame B’s content. If you move back to
Frame A and call FrameA.back() , the content of Frame B changes (clicking the
Back button behaves the same).

If you want to navigate Frame A separately, use FrameA.history.back() .

Examples The following custom buttons perform the same operation as the browser’s
Back button:

<P><INPUT TYPE="button" VALUE="< Go Back"
onClick="history.back()">

<P><INPUT TYPE="button" VALUE="> Go Back"
onClick="myWindow.back()">

See also window.forward , History.back

Method of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 507

window.blur
blur .

Removes focus from the specified object.

Syntax blur()

Parameters None

Description Use the blur method to remove focus from a specific window or frame.
Removing focus from a window sends the window to the background in most
windowing systems.

See also window.focus

btoa .

Creates a base-64 encoded ASCII string from a string of binary data.

Syntax btoa(stringToEncode)

Parameters

Description This method takes a binary ASCII string as a parameter and returns another
ASCII string which has been encoded using base-64 encoding.

You can use this method to encode data which may otherwise cause
communication problems, transmit it, then use the window.atob method to
decode the data again. For example, you can encode characters such as ASCII
values 0 through 31.

Examples See window.atob .

See also window.atob

Method of window

Implemented in JavaScript 1.0

Method of window

Implemented in JavaScript 1.2

stringToEncode An arbitrary binary string to be encoded.
508 Client-Side JavaScript Reference

window.captureEvents
captureEvents .

Sets the window to capture all events of the specified type.

Syntax captureEvents(eventType1 [| eventTypeN...])

Parameters

Security When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use captureEvents in a signed script
and precede it with enableExternalCapture . You must have the
UniversalBrowserWrite privilege. For more information and an example, see
enableExternalCapture . For information on security, see the Client-Side
JavaScript Guide.

See also captureEvents works in tandem with releaseEvents , routeEvent , and
handleEvent . For more information, see the Client-Side JavaScript Guide.

clearInterval .

Cancels a timeout that was set with the setInterval method.

Syntax clearInterval(intervalID)

Parameters

Description See setInterval .

Examples See setInterval .

See also window.setInterval

Method of window

Implemented in JavaScript 1.2

eventType1...
eventTypeN

The type of event to be captured. The available event types are
discussed in Chapter 3, “Event Handlers.”

Method of window

Implemented in JavaScript 1.2

intervalID Timeout setting that was returned by a previous call to the
setInterval method.
Chapter 1, Objects, Methods, and Properties 509

window.clearTimeout
clearTimeout .

Cancels a timeout that was set with the setTimeout method.

Syntax clearTimeout(timeoutID)

Parameters

Description See setTimeout .

Examples See setTimeout .

See also window.clearInterval , window.setTimeout

close .

Closes the specified window.

Syntax close()

Parameters None

Security To unconditionally close a window, you need the UniversalBrowserWrite
privilege. For information on security, see the Client-Side JavaScript Guide.

Description The close method closes the specified window. If you call close without
specifying a windowReference , JavaScript closes the current window.

The close method closes only windows opened by JavaScript using the open
method. If you attempt to close any other window, a confirm is generated,
which lets the user choose whether the window closes. This is a security

Method of window

Implemented in JavaScript 1.0

timeoutID A timeout setting that was returned by a previous call to the
setTimeout method.

Method of window

Implemented in JavaScript 1.0: closes any window

JavaScript 1.1: closes only windows opened by JavaScript

JavaScript 1.2: must use signed scripts to unconditionally close a
window
510 Client-Side JavaScript Reference

window.closed
feature to prevent “mail bombs” containing self.close() . However, if the
window has only one document (the current one) in its session history, the
close is allowed without any confirm. This is a special case for one-off windows
that need to open other windows and then dispose of themselves.

In event handlers, you must specify window.close() instead of simply using
close() . Due to the scoping of static objects in JavaScript, a call to close()
without specifying an object name is equivalent to document.close() .

Examples Example 1. Any of the following examples closes the current window:

window.close()
self.close()
close()

Example 2: Close the main browser window. The following code closes the
main browser window.

top.opener.close()

Example 3. The following example closes the messageWin window:

messageWin.close()

This example assumes that the window was opened in a manner similar to the
following:

messageWin=window.open("")

See also window.closed , window.open

closed .

Specifies whether a window is closed.

Description The closed property is a boolean value that specifies whether a window has
been closed. When a window closes, the window object that represents it
continues to exist, and its closed property is set to true.

Use closed to determine whether a window that you opened, and to which
you still hold a reference (from the return value of window.open), is still open.
Once a window is closed, you should not attempt to manipulate it.

Property of window

Read-only

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 511

window.confirm
Examples Example 1. The following code opens a window, win1 , then later checks to
see if that window has been closed. A function is called depending on whether
win1 is closed.

win1=window.open('opener1.html','window1','width=300,height=300')
...
if (win1.closed)

function1()
else
function2()

Example 2. The following code determines if the current window’s opener
window is still closed, and calls the appropriate function.

if (window.opener.closed)
function1()
else
function2()

See also window.close , window.open

confirm .

Displays a Confirm dialog box with the specified message and OK and Cancel
buttons.

Syntax confirm(message)

Parameters

Description A confirm dialog box looks as follows:

Method of window

Implemented in JavaScript 1.0

message A string.
512 Client-Side JavaScript Reference

window.crypto
Use the confirm method to ask the user to make a decision that requires either
an OK or a Cancel. The message argument specifies a message that prompts
the user for the decision. The confirm method returns true if the user chooses
OK and false if the user chooses Cancel.

You cannot specify a title for a confirm dialog box, but you can use the open
method to create your own confirm dialog. See open .

Examples This example uses the confirm method in the confirmCleanUp function to
confirm that the user of an application really wants to quit. If the user chooses
OK, the custom cleanUp function closes the application.

function confirmCleanUp() {
if (confirm("Are you sure you want to quit this application?")) {

cleanUp()
}

}

You can call the confirmCleanUp function in the onClick event handler of a
form’s push button, as shown in the following example:

<INPUT TYPE="button" VALUE="Quit" onClick="confirmCleanUp()">

See also window.alert , window.prompt

crypto .

An object which allows access Navigator’s encryption features.

Description The crypto object is only available as a property of window ; it provides
access to methods which support Navigator’s encryption features.

See also window.crypto.random , window.crypto.signText

Property of window

Read-only

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 513

window.crypto.random
crypto.random .

Returns a pseudo-random string whose length is the specified number of bytes.

Syntax crypto.random(numberOfBytes)

Parameters

Description This method generates a random string of data whose length is specified by the
numberOfBytes parameter.

Examples The following function returns a string whose length is 16 bytes.

function getRandom() {
return crypto.random(16)

}

See also Math.random

crypto.signText .

Returns a string of encoded data which represents a signed object.

Syntax crypto.signText
(text, selectionStyle [, authority1 [, ... authorityN]])

Method of window

Static

Implemented in JavaScript 1.2

numberOfBytes The number of bytes of pseudo-random data the method will
return.

Method of window

Static

Implemented in JavaScript 1.2
514 Client-Side JavaScript Reference

window.defaultStatus
Parameters

Description The signText method asks a user to validate a text string by attaching a
digital signature to it. If the selectionStyle parameter is set to ask ,
signText displays a dialog box, and a user must interactively select a
certificate to validate the text. If selectionStyle is set to auto , Navigator
attempts to automatically select a certificate.

Use the signText method to submit an encoded signature to a server; the
server decodes the signature and verifies it. If signText fails, it returns one of
the following error codes:

• error:noMatchingCert specifies that the user’s certificate does not
match one of the certificates required by authority1 through
authorityN .

• error:userCancel specifies that the user cancelled the signature dialog
box without submitting a certificate.

• error:internalError specifies that an internal error occurred.

defaultStatus .

The default message displayed in the status bar at the bottom of the window.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

text A string evaluating to the text you want a user to sign.

selectionStyle A string evaluating to either of the following:

• ask specifies that a dialog box will present a user with a list of
possible certificates.

• auto specifies that Navigator automatically selects a certificate
from authority1 through authorityN.

authority1...
authorityN

Optional strings evaluating to Certificate Authorities accepted by the
server using the signed text.

Property of window

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 515

window.disableExternalCapture
Description The defaultStatus message appears when nothing else is in the status bar.
Do not confuse the defaultStatus property with the status property. The
status property reflects a priority or transient message in the status bar, such
as the message that appears when a mouseOver event occurs over an anchor.

You can set the defaultStatus property at any time. You must return true if
you want to set the defaultStatus property in the onMouseOut or
onMouseOver event handlers.

Examples In the following example, the statusSetter function sets both the status
and defaultStatus properties in an onMouseOver event handler:

function statusSetter() {
window.defaultStatus = "Click the link for the Netscape home page"
window.status = "Netscape home page"

}

<A HREF="http://home.netscape.com"
onMouseOver = "statusSetter(); return true">Netscape

In the previous example, notice that the onMouseOver event handler returns a
value of true. You must return true to set status or defaultStatus in an
event handler.

See also window.status

disableExternalCapture .

Disables external event capturing set by the enableExternalCapture method.

Syntax disableExternalCapture()

Parameters None

Description See enableExternalCapture .

Method of window

Implemented in JavaScript 1.2
516 Client-Side JavaScript Reference

window.document
document .

Contains information on the current document, and provides methods for
displaying HTML output to the user.

Description The value of this property is the window’s associated document object.

enableExternalCapture .

Allows a window with frames to capture events in pages loaded from different
locations (servers).

Syntax enableExternalCapture()

Parameters None

Description Use this method in a signed script requesting UniversalBrowserWrite
privileges, and use it before calling the captureEvents method.

If Communicator sees additional scripts that cause the set of principals in effect
for the container to be downgraded, it disables external capture of events.
Additional calls to enableExternalCapture (after acquiring the
UniversalBrowserWrite privilege under the reduced set of principals) can be
made to enable external capture again.

Examples In the following example, the window is able to capture all Click events that
occur across its frames.

<SCRIPT ARCHIVE="myArchive.jar" ID="2">
function captureClicks() {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserWrite");

enableExternalCapture();
captureEvents(Event.CLICK);
...

}
</SCRIPT>

See also window.disableExternalCapture , window.captureEvents

Property of window

Implemented in JavaScript 1.0

Method of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 517

window.find
find .

Finds the specified text string in the contents of the specified window.

Syntax find([string [, caseSensitive , backward]])

Parameters

Returns true if the string is found; otherwise, false.

Description When a string is specified, the browser performs a case-insensitive, forward
search. If a string is not specified, the method displays the Find dialog box,
allowing the user to enter a search string.

focus .

Gives focus to the specified object.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a specific window or frame, and give it
focus. Giving focus to a window brings the window forward in most
windowing systems.

In JavaScript 1.1, on some platforms, the focus method gives focus to a frame
but the focus is not visually apparent (for example, the frame’s border is not
darkened).

Method of window

Implemented in JavaScript 1.2

string The text string for which to search.

caseSensitive Boolean value. If true, specifies a case-sensitive search. If you
supply this parameter, you must also supply backward .

backward Boolean. If true, specifies a backward search. If you supply this
parameter, you must also supply casesensitive .

Method of window

Implemented in JavaScript 1.1
518 Client-Side JavaScript Reference

window.forward
Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the focus method
returns focus to the Password object and the select method highlights it so
the user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {

alert("Please enter your password again.")
userPass.focus()
userPass.select()

}
}

This example assumes that the Password object is defined as

<INPUT TYPE="password" NAME="userPass">

See also window.blur

forward .

Points the browser to the next URL in the current history list; equivalent to the
user pressing the browser’s Forward button

Syntax history.forward()

forward()

Parameters None

Description This method performs the same action as a user choosing the Forward button
in the browser. The forward method is the same as history.go(1) .

When used with the Frame object, forward behaves as follows: While in Frame
A, you click the Back button to change Frame A’s content. You then move to
Frame B and click the Back button to change Frame B’s content. If you move
back to Frame A and call FrameA.forward() , the content of Frame B changes
(clicking the Forward button behaves the same). If you want to navigate Frame
A separately, use FrameA.history.forward() .

Method of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 519

window.frames
Examples The following custom buttons perform the same operation as the browser’s
Forward button:

<P><INPUT TYPE="button" VALUE="< Go Forth"
onClick="history.forward()">

<P><INPUT TYPE="button" VALUE="> Go Forth"
onClick="myWindow.forward()">

See also window.back

frames .

An array of objects corresponding to child frames (created with the FRAME tag)
in source order.

You can refer to the child frames of a window by using the frames array. This
array contains an entry for each child frame (created with the FRAME tag) in a
window containing a FRAMESET tag; the entries are in source order. For
example, if a window contains three child frames whose NAME attributes are
fr1 , fr2 , and fr3 , you can refer to the objects in the images array either as:

parent.frames["fr1"]
parent.frames["fr2"]
parent.frames["fr3"]

or as:

parent.frames[0]
parent.frames[1]
parent.frames[2]

You can find out how many child frames the window has by using the length
property of the window itself or of the frames array.

The value of each element in the frames array is <object nameAttribute> ,
where nameAttribute is the NAME attribute of the frame.

Property of window

Read-only

Implemented in JavaScript 1.0
520 Client-Side JavaScript Reference

window.handleEvent
handleEvent .

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description handleEvent works in tandem with captureEvents , releaseEvents , and
routeEvent . For more information, see the Client-Side JavaScript Guide.

history .

Contains information on the URLs that the client has visited within a window.

Description The value of this property is the window’s associated History object.

home .

Points the browser to the URL specified in preferences as the user’s home page;
equivalent to the user pressing the browser’s Home button.

Syntax home()

Parameters None

Description This method performs the same action as a user choosing the Home button in
the browser.

Method of window

Implemented in JavaScript 1.2

event The name of an event for which the specified object has an event
handler.

Property of window

Implemented in JavaScript 1.1

Method of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 521

window.innerHeight
innerHeight .

Specifies the vertical dimension, in pixels, of the window's content area.

Description To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

Security To set the inner height of a window to a size smaller than 100 x 100 or larger
than the screen can accommodate, you need the UniversalBrowserWrite
privilege. For information on security, see the Client-Side JavaScript Guide.

See also window.innerWidth , window.outerHeight , window.outerWidth

innerWidth .

Specifies the horizontal dimension, in pixels, of the window's content area.

Description To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

Security To set the inner width of a window to a size smaller than 100 x 100 or larger
than the screen can accommodate, you need the UniversalBrowserWrite
privilege. For information on security, see the Client-Side JavaScript Guide.

See also window.innerHeight , window.outerHeight , window.outerWidth

length .

The number of child frames in the window.

Description This property gives you the same result as using the length property of the
frames array.

Property of window

Implemented in JavaScript 1.2

Property of window

Implemented in JavaScript 1.2

Property of window

Read-only

Implemented in JavaScript 1.0
522 Client-Side JavaScript Reference

window.location
location .

Contains information on the current URL.

Description The value of this property is the window’s associated Location object.

locationbar .

Represents the browser window's location bar (the region containing the
bookmark and URL areas).

Description The value of the locationbar property itself has one property, visible . If
true, the location bar is visible; if false, it is hidden.

Security Setting the value of the location bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

Property of window

Implemented in JavaScript 1.0

Property of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 523

window.menubar
menubar .

Represents the browser window’s menu bar. This region contains the browser’s
drop-down menus such as File, Edit, View, Go, Communicator, and so on.

Description The value of the menubar property itself has one property, visible . If true, the
menu bar is visible; if false, it is hidden.

Security Setting the value of the menu bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

moveBy .

Moves the window relative to its current position, moving the specified number
of pixels.

Syntax moveBy(horizontal , vertical)

Parameters

Description This method moves the window by adding or subtracting the specified number
of pixels to the current location.

Property of window

Implemented in JavaScript 1.2

Method of window

Implemented in JavaScript 1.2

horizontal The number of pixels by which to move the window horizontally.

vertical The number of pixels by which to move the window vertically.
524 Client-Side JavaScript Reference

window.moveTo
Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. You need the UniversalBrowserWrite privilege for this. For
information on security, see the Client-Side JavaScript Guide.

Examples: To move the current window 5 pixels up towards the top of the screen (x-axis),
and 10 pixels towards the right (y-axis) of the current window position, use this
statement:

self.moveBy(-5,10); // relative positioning

See also window.moveTo

moveTo .

Moves the top-left corner of the window to the specified screen coordinates.

Syntax moveTo(x-coordinate , y-coordinate)

Parameters

Description This method moves the window to the absolute pixel location indicated by its
parameters. The origin of the axes is at absolute position (0,0); this is the upper
left-hand corner of the display.

Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. You need the UniversalBrowserWrite privilege for this. For
information on security, see the Client-Side JavaScript Guide.

Examples: To move the current window to 25 pixels from the top boundary of the screen
(x-axis), and 10 pixels from the left boundary of the screen (y-axis), use this
statement:

self.moveTo(25,10); // absolute positioning

See also window.moveBy

Method of window

Implemented in JavaScript 1.2

x-coordinate The left edge of the window in screen coordinates.

y-coordinate The top edge of the window in screen coordinates.
Chapter 1, Objects, Methods, and Properties 525

window.name
name .

A string specifying the window’s name.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description In JavaScript 1.0, NAME was a read-only property. In later versions, this property
is modifiable by your code. This allows you to assign a name to a top-level
window.

Examples In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin .

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

offscreenBuffering .

Specifies whether window updates are performed in an offscreen buffer.

Description By default, Navigator automatically determines whether updates to a window
are performed in an offscreen buffer and then displayed in a window. You can
either prevent buffering completely or require Navigator to buffer updates by
setting offscreenBuffering to either false or true , respectively.

Buffering can reduce the flicker that occurs during window updates, but it
requires additional system resources.

Property of window

Read-only (2.0); Modifiable (later versions)

Implemented in JavaScript 1.0

Property of window

Implemented in JavaScript 1.2
526 Client-Side JavaScript Reference

window.open
open .

Opens a new web browser window.

Syntax open(URL, windowName[, windowFeatures])

Parameters

Description In event handlers, you must specify window.open() instead of simply using
open() . Due to the scoping of static objects in JavaScript, a call to open()
without specifying an object name is equivalent to document.open() .

The open method opens a new Web browser window on the client, similar to
choosing New, then Navigator Window from the Navigator File menu. The URL
argument specifies the URL contained by the new window. If URL is an empty
string, a new, empty window is created.

You can use open on an existing window, and if you pass the empty string for
the URL, you will get a reference to the existing window, but not load anything
into it. You can, for example, then look for properties in the window.

windowFeatures is an optional string containing a comma-separated list of
options for the new window (do not include any spaces in this list). After a
window is open, you cannot use JavaScript to change the windowFeatures.
You can specify the following features:

Method of window

Implemented in JavaScript 1.0

JavaScript 1.2: added several new windowFeatures

URL A string specifying the URL to open in the new window. See the
Location object for a description of the URL components.

windowName A string specifying the window name to use in the TARGET
attribute of a FORM or A tag. windowName can contain only
alphanumeric or underscore (_) characters.

windowFeatures A string containing a comma-separated list determining whether or
not to create various standard window features. These options are
described in the following section.
Chapter 1, Objects, Methods, and Properties 527

window.open
Table 1.4 Optional features to specify for a new window.

windowFeatures Description

alwaysLowered (JavaScript 1.2) If yes, creates a new window that floats below
other windows, whether it is active or not. This is a secure
feature and must be set in signed scripts.

alwaysRaised (JavaScript 1.2) If yes, creates a new window that floats on top
of other windows, whether it is active or not. This is a secure
feature and must be set in signed scripts.

dependent (JavaScript 1.2) If yes, creates a new window as a child of the
current window. A dependent window closes when its parent
window closes. On Windows platforms, a dependent window
does not show on the task bar.

directories If yes, creates the standard browser directory buttons, such as
What’s New and What’s Cool.

height (JavaScript 1.0 and 1.1) Specifies the height of the window in
pixels.

hotkeys (JavaScript 1.2) If no (or 0), disables most hotkeys in a new
window that has no menu bar. The security and quit hotkeys
remain enabled.

innerHeight (JavaScript 1.2) Specifies the height, in pixels, of the window's
content area. To create a window smaller than 100 x 100 pixels,
set this feature in a signed script. This feature replaces height ,
which remains for backwards compatibility.

innerWidth (JavaScript 1.2) Specifies the width, in pixels, of the window's
content area. To create a window smaller than 100 x 100 pixels,
set this feature in a signed script. This feature replaces width ,
which remains for backwards compatibility.

location If yes, creates a Location entry field.

menubar If yes, creates the menu at the top of the window.

outerHeight (JavaScript 1.2) Specifies the vertical dimension, in pixels, of the
outside boundary of the window. To create a window smaller
than 100 x 100 pixels, set this feature in a signed script.

personalbar (JavaScript 1.2) If yes, creates the Personal Toolbar, which
displays buttons from the user’s Personal Toolbar bookmark
folder.

resizable If yes, allows a user to resize the window.
528 Client-Side JavaScript Reference

window.open
Many of these features (as noted above) can either be yes or no. For these
features, you can use 1 instead of yes and 0 instead of no. If you want to turn a
feature on, you can also simply list the feature name in the windowFeatures
string.

If windowName does not specify an existing window and you do not supply the
windowFeatures parameter, all of the features which have a yes/no choice are
yes by default. However, if you do supply the windowFeatures parameter,
then the titlebar and hotkeys are still yes by default, but the other features
which have a yes/no choice are no by default.

For example, all of the following statements turn on the toolbar option and turn
off all other Boolean options:

open("", "messageWindow", "toolbar")
open("", "messageWindow", "toolbar=yes")
open("", "messageWindow", "toolbar=1")

screenX (JavaScript 1.2) Specifies the distance the new window is placed
from the left side of the screen. To place a window offscreen, set
this feature in a signed scripts.

screenY (JavaScript 1.2) Specifies the distance the new window is placed
from the top of the screen. To place a window offscreen, set this
feature in a signed scripts.

scrollbars If yes, creates horizontal and vertical scrollbars when the
Document grows larger than the window dimensions.

status If yes, creates the status bar at the bottom of the window.

titlebar (JavaScript 1.2) If yes, creates a window with a title bar. To set
the titlebar to no, set this feature in a signed script.

toolbar If yes, creates the standard browser toolbar, with buttons such as
Back and Forward.

width (JavaScript 1.0 and 1.1) Specifies the width of the window in
pixels.

z-lock (JavaScript 1.2) If yes, creates a new window that does not rise
above other windows when activated. This is a secure feature
and must be set in signed scripts.

Table 1.4 Optional features to specify for a new window.

windowFeatures Description
Chapter 1, Objects, Methods, and Properties 529

window.open
The following statement turn on the location and directories options and turns
off all other Boolean options:

open("", "messageWindow", "toolbar,directories=yes")

How the alwaysLowered , alwaysRaised , and z-lock features behave
depends on the windowing hierarchy of the platform. For example, on
Windows, an alwaysLowered or z-locked browser window is below all
windows in all open applications. On Macintosh, an alwaysLowered browser
window is below all browser windows, but not necessarily below windows in
other open applications. Similarly for an alwaysRaised window.

You may use open to open a new window and then use open on that window
to open another window, and so on. In this way, you can end up with a chain
of opened windows, each of which has an opener property pointing to the
window that opened it.

Communicator allows a maximum of 100 windows to be around at once. If you
open window2 from window1 and then are done with window1 , be sure to set
the opener property of window2 to null . This allows JavaScript to garbage
collect window1 . If you do not set the opener property to null , the window1
object remains, even though it’s no longer really needed.

Security To perform the following operations, you need the UniversalBrowserWrite
privilege:

• To create a window smaller than 100 x 100 pixels or larger than the screen
can accommodate by using innerWidth , innerHeight , outerWidth , and
outerHeight .

• To place a window off screen by using screenX and screenY .

• To create a window without a titlebar by using titlebar .

• To use alwaysRaised , alwaysLowered , or z-lock for any setting.

For information on security, see the Client-Side JavaScript Guide.
530 Client-Side JavaScript Reference

window.opener
Examples Example 1. In the following example, the windowOpener function opens a
window and uses write methods to display a message:

function windowOpener() {
msgWindow=window.open("","displayWindow","menubar=yes")
msgWindow.document.write

("<HEAD><TITLE>Message window</TITLE></HEAD>")
msgWindow.document.write

("<CENTER><BIG>Hello, world!</BIG></CENTER>")
}

Example 2. The following is an onClick event handler that opens a new client
window displaying the content specified in the file sesame.html . The window
opens with the specified option settings; all other options are false because
they are not specified.

<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"

onClick="window.open ('sesame.html', 'newWin',
'scrollbars=yes,status=yes,width=300,height=300')">

</FORM>

See also window.close

opener .

Specifies the window of the calling document when a window is opened using
the open method.

Description When a source document opens a destination window by calling the open
method, the opener property specifies the window of the source document.
Evaluate the opener property from the destination window.

This property persists across document unload in the opened window.

You can change the opener property at any time.

You may use window.open to open a new window and then use
window.open on that window to open another window, and so on. In this
way, you can end up with a chain of opened windows, each of which has an
opener property pointing to the window that opened it.

Property of window

Implemented in JavaScript 1.1
Chapter 1, Objects, Methods, and Properties 531

window.outerHeight
Communicator allows a maximum of 100 windows to be around at once. If you
open window2 from window1 and then are done with window1 , be sure to set
the opener property of window2 to null . This allows JavaScript to garbage
collect window1 . If you do not set the opener property to null , the window1
object remains, even though it’s no longer really needed.

Examples Example 1: Close the opener. The following code closes the window that
opened the current window. When the opener window closes, opener is
unchanged. However, window.opener.name then evaluates to undefined.

window.opener.close()

Example 2: Close the main browser window.

top.opener.close()

Example 3: Evaluate the name of the opener. A window can determine the
name of its opener as follows:

document.write("
opener property i s " + window.opener.name)

Example 4: Change the value of opener. The following code changes the
value of the opener property to null. After this code executes, you cannot close
the opener window as shown in Example 1.

window.opener=null

Example 5: Change a property of the opener. The following code changes
the background color of the window specified by the opener property.

window.opener.document.bgColor='bisque'

See also window.close , window.open

outerHeight .

Specifies the vertical dimension, in pixels, of the window's outside boundary.

Description The outer boundary includes the scroll bars, the status bar, the toolbars, and
other “chrome” (window border user interface elements). To create a window
smaller than 100 x 100 pixels, set this property in a signed script.

See also window.innerWidth , window.innerHeight , window.outerWidth

Property of window

Implemented in JavaScript 1.2
532 Client-Side JavaScript Reference

window.outerWidth
outerWidth .

Specifies the horizontal dimension, in pixels, of the window's outside
boundary.

Description The outer boundary includes the scroll bars, the status bar, the toolbars, and
other “chrome” (window border user interface elements). To create a window
smaller than 100 x 100 pixels, set this property in a signed script.

See also window.innerWidth , window.innerHeight , window.outerHeight

pageXOffset .

Provides the current x-position, in pixels, of a window's viewed page.

Description The pageXOffset property provides the current x-position of a page as it
relates to the upper-left corner of the window's content area. This property is
useful when you need to find the current location of the scrolled page before
using scrollTo or scrollBy .

Examples The following example returns the x-position of the viewed page.

x = myWindow.pageXOffset

See Also window.pageYOffset

Property of window

Implemented in JavaScript 1.2

Property of window

Read-only

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 533

window.pageYOffset
pageYOffset .

Provides the current y-position, in pixels, of a window's viewed page.

Description The pageYOffset property provides the current y-position of a page as it
relates to the upper-left corner of the window's content area. This property is
useful when you need to find the current location of the scrolled page before
using scrollTo or scrollBy .

Examples The following example returns the y-position of the viewed page.

x = myWindow.pageYOffset

See also window.pageXOffset

parent .

The parent property is the window or frame whose frameset contains the
current frame.

Description This property is only meaningful for frames; that is, windows that are not top-
level windows.

The parent property refers to the FRAMESET window of a frame. Child frames
within a frameset refer to sibling frames by using parent in place of the
window name in one of the following ways:

parent.frameName
parent.frames[index]

For example, if the fourth frame in a set has NAME="homeFrame", sibling frames
can refer to that frame using parent.homeFrame or parent.frames[3] .

You can use parent.parent to refer to the “grandparent” frame or window
when a FRAMESET tag is nested within a child frame.

Property of window

Read-only

Implemented in JavaScript 1.2

Property of window

Read-only

Implemented in JavaScript 1.0
534 Client-Side JavaScript Reference

window.personalbar
The value of the parent property is

<object nameAttribute>

where nameAttribute is the NAME attribute if the parent is a frame, or an
internal reference if the parent is a window.

Examples See examples for Frame .

personalbar .

Represents the browser window’s personal bar (also called the directories bar).
This is the region the user can use for easy access to certain bookmarks.

Description The value of the personalbar property itself has one property, visible . If
true, the personal bar is visible; if false, it is hidden.

Security Setting the value of the personal bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

print .

Prints the contents of the window.

Syntax print()

Parameters None

Property of window

Implemented in JavaScript 1.2

Method of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 535

window.prompt
prompt .

Displays a Prompt dialog box with a message and an input field.

Syntax prompt(message [, inputDefault])

Parameters

Description A prompt dialog box looks as follows:

Use the prompt method to display a dialog box that receives user input. If you
do not specify an initial value for inputDefault , the dialog box displays
<undefined> .

You cannot specify a title for a prompt dialog box, but you can use the open
method to create your own prompt dialog. See open .

Examples prompt("Enter the number of cookies you want to order:", 12)

See also window.alert , window.confirm

releaseEvents .

Sets the window or document to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

Note If the original target of the event is a window, the window receives the event
even if it is set to release that type of event.

Method of window

Implemented in JavaScript 1.0

message A string to be displayed as the message.

inputDefault A string or integer representing the default value of the input field.

Method of window

Implemented in JavaScript 1.2
536 Client-Side JavaScript Reference

window.resizeBy
Syntax releaseEvents(eventType1 [| eventTypeN...])

Parameters

Description releaseEvents works in tandem with captureEvents , routeEvent , and
handleEvent . For more information, see the Client-Side JavaScript Guide.

resizeBy .

Resizes an entire window by moving the window’s bottom-right corner by the
specified amount.

Syntax resizeBy(horizontal , vertical)

Parameters

Description This method changes the window’s dimensions by setting its outerWidth and
outerHeight properties. The upper left-hand corner remains anchored and
the lower right-hand corner moves. resizeBy moves the window by adding or
subtracting the specified number of pixels to that corner’s current location.

Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. In addition, windows have an enforced minimum size of 100 x 100
pixels; resizing a window to be smaller than this minimum requires signed
JavaScript. You need the UniversalBrowserWrite privilege for this. For
information on security, see the Client-Side JavaScript Guide.

Examples To make the current window 5 pixels narrower and 10 pixels taller than its
current dimensions, use this statement:

self.resizeBy(-5,10); // relative positioning

See also window.resizeTo

eventType1...
eventTypeN

The type of event to be captured. The available event types are
discussed in Chapter 3, “Event Handlers.”

Method of window

Implemented in JavaScript 1.2

horizontal The number of pixels by which to resize the window horizontally.

vertical The number of pixels by which to resize the window vertically.
Chapter 1, Objects, Methods, and Properties 537

window.resizeTo
resizeTo .

Resizes an entire window to the specified pixel dimensions.

Syntax resizeTo(outerWidth , outerHeight)

Parameters

Description This method changes the window’s dimensions by setting its outerWidth and
outerHeight properties. The upper left-hand corner remains anchored and
the lower right-hand corner moves. resizeBy moves to the specified position.
The origin of the axes is at absolute position (0,0); this is the upper left-hand
corner of the display.

Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. In addition, windows have an enforced minimum size of 100 x 100
pixels; resizing a window to be smaller than this minimum requires signed
JavaScript. You need the UniversalBrowserWrite privilege for this. For
information on security, see the Client-Side JavaScript Guide.

Examples To make the window 225 pixels wide and 200 pixels tall, use this statement:

self.resizeTo(225,200); // absolute positioning

See also window.resizeBy

routeEvent .

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

Method of window

Implemented in JavaScript 1.2

outerWidth An integer representing the window’s width in pixels.

outerHeight An integer representing the window’s height in pixels.

Method of window

Implemented in JavaScript 1.2

event Name of the event to be routed.
538 Client-Side JavaScript Reference

window.screenX
Description If a sub-object (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvent works in tandem with captureEvents , releaseEvents , and
handleEvent . For more information, see the Client-Side JavaScript Guide.

screenX .

Specifies the x-coordinate of the left edge of a window.

Security Setting the value of the screenX property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

See also window.screenY

screenY .

Specifies the y-coordinate of the top edge of a window.

Security Setting the value of the screenY property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

See also window.screenX

Property of window

Implemented in JavaScript 1.2

Property of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 539

window.scroll
scroll .

Scrolls a window to a specified coordinate.

Description In JavaScript 1.2, scroll is no longer used and has been replaced by
scrollTo . scrollTo extends the capabilities of scroll . scroll remains for
backward compatibility.

scrollbars .

Represents the browser window’s vertical and horizontal scroll bars for the
document area.

Description The value of the scrollbars property itself has one property, visible . If true,
both scrollbars are visible; if false, they are hidden.

Security Setting the value of the scrollbars’ visible property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

Method of window

Implemented in JavaScript 1.1
JavaScript 1.2: deprecated

Property of window

Implemented in JavaScript 1.2
540 Client-Side JavaScript Reference

window.scrollBy
scrollBy .

Scrolls the viewing area of a window by the specified amount.

Syntax scrollBy(horizontal , vertical)

Parameters

Description This method scrolls the content in the window if portions that can’t be seen
exist outside of the window. scrollBy scrolls the window by adding or
subtracting the specified number of pixels to the current scrolled location.

For this method to have an effect the visible property of
window.scrollbars must be true.

Examples To scroll the current window 5 pixels towards the left and 30 pixels down from
the current position, use this statement:

self.scrollBy(-5,30); // relative positioning

See also window.scrollTo

scrollTo .

Scrolls the viewing area of the window so that the specified point becomes the
top-left corner.

Syntax scrollTo(x-coordinate , y-coordinate)

Parameters

Method of window

Implemented in JavaScript 1.2

horizontal The number of pixels by which to scroll the viewing area
horizontally.

vertical The number of pixels by which to scroll the viewing area vertically.

Method of window

Implemented in JavaScript 1.2

x-coordinate An integer representing the x-coordinate of the viewing area in
pixels.

y-coordinate An integer representing the y-coordinate of the viewing area in
pixels.
Chapter 1, Objects, Methods, and Properties 541

window.scrollTo
Description scrollTo replaces scroll . scroll remains for backward compatibility.

The scrollTo method scrolls the content in the window if portions that can’t
be seen exist outside of the window. For this method to have an effect the
visible property of window.scrollbars must be true.

Examples Example 1: Scroll the current viewing area. To scroll the current window to
the leftmost boundary and 20 pixels down from the top of the window, use this
statement:

self.scrollTo(0,20); // absolute positioning

Example 2: Scroll a different viewing area. The following code, which
exists in one frame, scrolls the viewing area of a second frame. Two Text
objects let the user specify the x and y coordinates. When the user clicks the
Go button, the document in frame2 scrolls to the specified coordinates.

<SCRIPT>
function scrollIt(form) {

var x = parseInt(form.x.value)
var y = parseInt(form.y.value)
parent.frame2.scrollTo(x, y)

}
</SCRIPT>
<BODY>

<FORM NAME="myForm">
<P>Specify the coordinates to scroll to:

Horizontal:
<INPUT TYPE="text" NAME=x VALUE="0" SIZE=4>

Vertical:
<INPUT TYPE="text" NAME=y VALUE="0" SIZE=4>

<INPUT TYPE="button" VALUE="Go"

onClick="scrollIt(document.myForm)">
</FORM>

See also window.scrollBy
542 Client-Side JavaScript Reference

window.self
self .

The self property is a synonym for the current window.

Description The self property refers to the current window. That is, the value of this
property is a synonym for the object itself.

Use the self property to disambiguate a window property from a form or form
element of the same name. You can also use the self property to make your
code more readable.

The value of the self property is

<object nameAttribute>

where nameAttribute is the NAME attribute if self refers to a frame, or an
internal reference if self refers to a window.

Examples In the following example, self.status is used to set the status property of
the current window. This usage disambiguates the status property of the
current window from a form or form element called status within the current
window.

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="self.status='Pick a random URL' ; return true">

Go!

Property of window

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 543

window.setHotKeys
setHotKeys .

Enables or disables hot keys in a window which does not have menus.

Syntax setHotKeys(trueOrFalse)

Parameters

Security To enable or disable hot keys, you need the UniversalBrowserWrite
privilege. For information on security, see the Client-Side JavaScript Guide.

Description By default, hot keys are disabled in a window which does not display a menu.
With the setHotKeys method, you can explicitly enable or disable all hot
keys except security and quit, which are always enabled.

You can also specify whether to enable hot keys at the time you create a
window when you use the window.open method.

See also window.open

Method of window

Implemented in JavaScript 1.2

trueOrFalse A Boolean value specifying whether hot keys are enabled:

• true enables hot keys

• false disables hot keys
544 Client-Side JavaScript Reference

window.setInterval
setInterval .

Evaluates an expression or calls a function every time a specified number of
milliseconds elapses, until canceled by a call to clearInterval .

Syntax setInterval(expression , msec)
setInterval(function , msec[, arg1 [, ..., argN]])

Parameters

Description The timeouts continue to fire until the associated window or frame is destroyed
or the interval is canceled using the clearInterval method.

setInterval does not stall the script. The script continues immediately (not
waiting for the interval to elapse). The call simply schedules a future event.

Examples The following code displays the current time in a Text object. In the
startclock function, the call to the setInterval method causes the
showtime function to be called every second to update the clock. Notice that
the startclock function and setInterval method are each called only one
time.

<SCRIPT LANGUAGE="JavaScript">
var timerID = null
var timerRunning = false

function stopclock(){
if(timerRunning)

clearInterval(timerID)
timerRunning = false

}

Method of window

Implemented in JavaScript 1.2

function Any function.

expression A string containing a JavaScript expression. The expression must be
quoted; otherwise, setInterval calls it immediately. For
example, setInterval("calcnum(3, 2)", 25) .

msec A numeric value or numeric string, in millisecond units.

arg1, ..., argn The arguments, if any, passed to function .
Chapter 1, Objects, Methods, and Properties 545

window.setResizable
function startclock(){
// Make sure the clock is stopped
stopclock()
timerID = setInterval("showtime()",1000)
timerRunning = true

}

function showtime(){
var now = new Date()
var hours = now.getHours()
var minutes = now.getMinutes()
var seconds = now.getSeconds()
var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
timeValue += ((minutes < 10) ? ":0" : ":") + minutes
timeValue += ((seconds < 10) ? ":0" : ":") + seconds
timeValue += (hours >= 12) ? " P.M. " : " A.M."
document.clock.face.value = timeValue

}
</SCRIPT>

<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">

<INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>

See also window.clearInterval , window.setTimeout

setResizable .

Specifies whether a user is permitted to resize a window.

Syntax setResizable(trueOrFalse)

Parameters

Method of window

Implemented in JavaScript 1.2

trueOrFalse A Boolean value specifying whether a user can resize a window:

• true lets a user resize the window

• false prevents a user from resizing the window
546 Client-Side JavaScript Reference

window.setTimeout
Description By default, a new Navigator window is resizable. With the setResizable
method, you can explicitly enable or disable the ability of a user to resize a
window. Not all operating systems support this method.

You can also specify whether a window is resizable at the time you create it
when you use the window.open method.

See also window.open

setTimeout .

Evaluates an expression or calls a function once after a specified number of
milliseconds elapses.

Syntax setTimeout(expression , msec)
setTimeout(function , msec[, arg1 [, ..., argN]])

Parameters

Description The setTimeout method evaluates an expression or calls a function after a
specified amount of time. It does not act repeatedly. For example, if a
setTimeout method specifies five seconds, the expression is evaluated or the
function is called after five seconds, not every five seconds. For repetitive
timeouts, use the setInterval method.

setTimeout does not stall the script. The script continues immediately (not
waiting for the timeout to expire). The call simply schedules a future event.

Method of window

Implemented in JavaScript 1.0: evaluating an expression

JavaScript 1.2: calling a function

expression A string containing a JavaScript expression. The expression must be
quoted; otherwise, setTimeout calls it immediately. For example,
setTimeout("calcnum(3, 2)", 25) .

msec A numeric value or numeric string, in millisecond units.

function Any function.

arg1, ..., arg N The arguments, if any, passed to function .
Chapter 1, Objects, Methods, and Properties 547

window.setTimeout
Examples Example 1. The following example displays an alert message five seconds
(5,000 milliseconds) after the user clicks a button. If the user clicks the second
button before the alert message is displayed, the timeout is canceled and the
alert does not display.

<SCRIPT LANGUAGE="JavaScript">
function displayAlert() {

alert("5 seconds have elapsed since the button was clicked.")
}
</SCRIPT>
<BODY>
<FORM>
Click the button on the left for a reminder in 5 seconds;
click the button on the right to cancel the reminder before
it is displayed.
<P>
<INPUT TYPE="button" VALUE="5-second reminder"

NAME="remind_button"
onClick="timerID=setTimeout('displayAlert()',5000)">

<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
NAME="remind_disable_button"
onClick="clearTimeout(timerID)">

</FORM>
</BODY>

Example 2. The following example displays the current time in a Text object.
The showtime function, which is called recursively, uses the setTimeout
method to update the time every second.

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
var timerID = null
var timerRunning = false
function stopclock(){

if(timerRunning)
clearTimeout(timerID)

timerRunning = false
}
function startclock(){

// Make sure the clock is stopped
stopclock()
showtime()

}

548 Client-Side JavaScript Reference

window.setZOptions
function showtime(){
var now = new Date()
var hours = now.getHours()
var minutes = now.getMinutes()
var seconds = now.getSeconds()
var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
timeValue += ((minutes < 10) ? ":0" : ":") + minutes
timeValue += ((seconds < 10) ? ":0" : ":") + seconds
timeValue += (hours >= 12) ? " P.M. " : " A.M."
document.clock.face.value = timeValue
timerID = setTimeout("showtime()",1000)
timerRunning = true

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">

<INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>

See also window.clearTimeout , window.setInterval

setZOptions .

Specifies the z-order stacking behavior of a window.

Syntax setZOptions(windowPosition)

Parameters

Security To set this property, you need the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Method of window

Implemented in JavaScript 1.2

windowPosition A string evaluating to any of the following values:

• alwaysRaised creates a new window that floats on top of other
windows, whether it is active or not.

• alwaysLowered creates a new window that floats below other
windows, whether it is active or not.

• z-lock creates a new window that does not rise above other
windows when activated.
Chapter 1, Objects, Methods, and Properties 549

window.status
Description By default, a Navigator window rises to the top of the z-order when it is
activated and moves down in the z-order as other windows are activated. With
the setZOptions method, you can explicitly specify a window’s position in
the z-order.

If you do not specify an argument for setZOptions , this method restores the
default z-order stacking behavior of a Navigator window.

You can also specify the order stacking behavior of a window at the time you
create it when you use the window.open method.

See also window.open

status .

Specifies a priority or transient message in the status bar at the bottom of the
window, such as the message that appears when a mouseOver event occurs
over an anchor.

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description Do not confuse the status property with the defaultStatus property. The
defaultStatus property reflects the default message displayed in the status
bar.

You can set the status property at any time. You must return true if you want
to set the status property in the onMouseOver event handler.

Examples Suppose you have created a JavaScript function called pickRandomURL that lets
you select a URL at random. You can use the onClick event handler of an
anchor to specify a value for the HREF attribute of the anchor dynamically, and
the onMouseOver event handler to specify a custom message for the window in
the status property:

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="self.status='Pick a random URL'; return true">

Go!

Property of window

Implemented in JavaScript 1.0
550 Client-Side JavaScript Reference

window.statusbar
In the preceding example, the status property of the window is assigned to
the window’s self property, as self.status .

See also window.defaultStatus

statusbar .

Represents the browser window's status bar. This is the region containing the
security indicator, browser status, and so on.

Description The value of the statusbar property itself one property, visible . If true, the
status bar is visible; if false, it is hidden.

Security Setting the value of the status bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

stop .

Stops the current download.

Syntax stop()

Parameters None

Definition This method performs the same action as a user choosing the Stop button in
the browser.

Property of window

Implemented in JavaScript 1.2

Method of window

Implemented in JavaScript 1.2
Chapter 1, Objects, Methods, and Properties 551

window.toolbar
toolbar .

Represents the browser window’s toolbar, containing the navigation buttons,
such as Back, Forward, Reload, Home, and so on.

Description The value of the toolbar property itself has one property, visible . If true, the
toolbar is visible; if false, it is hidden.

Security Setting the value of the toolbar’s visible property requires the
UniversalBrowserWrite privilege. For information on security, see the Client-
Side JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

top .

The top property is a synonym for the topmost browser window, which is a
document window or web browser window.

Description The top property refers to the topmost window that contains frames or nested
framesets. Use the top property to refer to this ancestor window.

The value of the top property is

<object objectReference>

where objectReference is an internal reference.

Property of window

Implemented in JavaScript 1.2

Property of window

Read-only

Implemented in JavaScript 1.0
552 Client-Side JavaScript Reference

window.window
Examples The statement top.close() closes the topmost ancestor window.

The statement top.length specifies the number of frames contained within the
topmost ancestor window. When the topmost ancestor is defined as follows,
top.length returns three:

<FRAMESET COLS="30%,40%,30%">
<FRAME SRC=child1.htm NAME="childFrame1">
<FRAME SRC=child2.htm NAME="childFrame2">
<FRAME SRC=child3.htm NAME="childFrame3">
</FRAMESET>

The following example sets the background color of a frame called myFrame to
red. myFrame is a child of the topmost ancestor window.

top.myFrame.document.bgColor="red"

window .

The window property is a synonym for the current window or frame.

Description The window property refers to the current window or frame. That is, the value
of this property is a synonym for the object itself.

Although you can use the window property as a synonym for the current frame,
your code may be more readable if you use the self property. For example,
window.name and self.name both specify the name of the current frame, but
self.name may be easier to understand (because a frame is not displayed as a
separate window).

Use the window property to disambiguate a property of the window object from
a form or form element of the same name. You can also use the window
property to make your code more readable.

The value of the window property is

<object nameAttribute>

where nameAttribute is the NAME attribute if window refers to a frame, or an
internal reference if window refers to a window.

Property of window

Read-only

Implemented in JavaScript 1.0
Chapter 1, Objects, Methods, and Properties 553

window.window
Examples In the following example, window.status is used to set the status property
of the current window. This usage disambiguates the status property of the
current window from a form called “status” within the current window.

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="window.status='Pick a random URL' ; return true">

Go!

See also window.self
554 Client-Side JavaScript Reference

C h a p t e r

2
Chapter 2Top-Level Properties and Functions
This chapter contains all JavaScript properties and functions not associated with
any object. In the ECMA specification, these properties and functions are
referred to as properties and methods of the global object.

The following table summarizes the top-level properties.

The following table summarizes the top-level functions.

Table 2.1 Top-level properties

Property Description

Infinity A numeric value representing infinity.

NaN A value representing Not-A-Number.

undefined The value undefined.

Table 2.2 Top-level functions

Function Description

escape Returns the hexadecimal encoding of an argument
in the ISO Latin-1 character set; used to create
strings to add to a URL.

eval Evaluates a string of JavaScript code without
reference to a particular object.
Chapter 2, Top-Level Properties and Functions 555

escape
escape
Returns the hexadecimal encoding of an argument in the ISO-Latin-1 character
set.

Syntax escape(" string ")

Parameters

Description escape is a top-level function and is not associated with any object.

Use the escape and unescape functions to encode and decode (add property
values manually) a Uniform Resource Locator (URL), a Uniform Resource
Identifier (URI), or a URI-type string.

isFinite Evaluates an argument to determine whether it is a
finite number.

isNaN Evaluates an argument to determine if it is not a
number.

Number Converts an object to a number.

parseFloat Parses a string argument and returns a floating-point
number.

parseInt Parses a string argument and returns an integer.

String Converts an object to a string.

taint Adds tainting to a data element or script.

unescape Returns the ASCII string for the specified
hexadecimal encoding value.

untaint Removes tainting from a data element or script.

Table 2.2 Top-level functions

Function Description

Core function

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262 compatible, except for Unicode characters.

string A string in the ISO-Latin-1 character set.
556 Client-Side JavaScript Reference

escape
The escape function encodes special characters in the specified string and
returns the new string. It encodes spaces, punctuation, and any other character
that is not an ASCII alphanumeric character, with the exception of these
characters:

* @ - _ + . /

Unicode. The escape and unescape functions do not use Unicode as
specified by the ECMA specification. Instead, they use the Internet Engineering
Task Force (IETF) guidelines for escaping characters. Within a URI, characters
use US-ASCII characters (ISO-Latin-1 character set). A URI is a sequence of
characters from the basic Latin alphabet, digits, and a few special characters (for
example, / and @). The escape sequences do not support \uXXXX as in
Unicode or %uXXXX as specified by ECMA, but %XX, where XX is a 2-digit
hexadecimal number (for example, %7E). In URI, characters are represented in
octets, as 8-bit bytes.

To allow the escape and unescape functions to work with Web server-
supported URLs and URIs, JavaScript does not use Unicode for these functions.

• escape returns the hexadecimal encoding of the specified string in the
ISO-Latin-1 character set.

• unescape returns the ASCII string, an ISO-Latin-1 character set sequence.

Unicode-specific escape sequences, %uXXXX, are not supported.

Examples Example 1. The following example returns "%26" :

escape("&") // returns "%26"

Example 2. The following statement returns a string with encoded characters
for spaces, commas, and apostrophes.

// returns "The_rain.%20In%20Spain%2C%20Ma%92am"
escape("The_rain. In Spain, Ma'am")

See also unescape
Chapter 2, Top-Level Properties and Functions 557

eval
eval
Evaluates a string of JavaScript code without reference to a particular object.

Syntax eval(string)

Parameters

Description eval is a top-level function and is not associated with any object.

The argument of the eval function is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x . You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2" , to a variable, and then calling eval at a
later point in your script.

If the argument of eval is not a string, eval returns the argument unchanged.
In the following example, the String constructor is specified, and eval
returns a String object rather than evaluating the string.

eval(new String("2+2”)) // returns a String object containing "2+2"
eval("2+2”) // returns 4

You should not indirectly use the eval function by invoking it via a name
other than eval . For example, you should not use the following code:

var x = 2
var y = 4
var myEval = eval
myEval("x + y")

Core function

Implemented in JavaScript 1.0

ECMA version ECMA-262

string A string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.
558 Client-Side JavaScript Reference

eval
Backward
Compatibility

JavaScript 1.1. eval is also a method of all objects. This method is described
for the Object class.

Examples The following examples display output using document.write . In server-side
JavaScript, you can display the same output by calling the write function
instead of using document.write .

Example 1. In the following code, both of the statements containing eval
return 42. The first evaluates the string "x + y + 1" ; the second evaluates the
string "42" .

var x = 2
var y = 39
var z = "42"
eval(" x + y + 1") // returns 42
eval(z) // returns 42

Example 2. In the following example, the getFieldName(n) function returns
the name of the specified form element as a string. The first statement assigns
the string value of the third form element to the variable field . The second
statement uses eval to display the value of the form element.

var field = getFieldName(3)
document.write("The field named ", field, " has value of ",

eval(field + ".value"))

Example 3. The following example uses eval to evaluate the string str . This
string consists of JavaScript statements that open an Alert dialog box and assign
z a value of 42 if x is five, and assigns 0 to z otherwise. When the second
statement is executed, eval will cause these statements to be performed, and it
will also evaluate the set of statements and return the value that is assigned to
z .

var str = "if (x == 5) {alert('z is 42') ; z = 42;} else z = 0; "
document.write("<P>z is ", eval(str))

Example 4. In the following example, the setValue function uses eval to
assign the value of the variable newValue to the text field textObject :

function setValue (textObject, newValue) {
eval ("document.forms[0]." + textObject + ".value") = newValue

}

Chapter 2, Top-Level Properties and Functions 559

Infinity
Example 5. The following example creates breed as a property of the object
myDog, and also as a variable. The first write statement uses eval('breed')
without specifying an object; the string "breed" is evaluated without regard to
any object, and the write method displays "Shepherd" , which is the value of
the breed variable. The second write statement uses myDog.eval('breed')
which specifies the object myDog; the string "breed" is evaluated with regard
to the myDog object, and the write method displays "Lab" , which is the value
of the breed property of the myDog object.

function Dog(name,breed,color) {
this.name=name
this.breed=breed
this.color=color

}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed='Shepherd'
document.write("<P>" + eval('breed'))
document.write("
" + myDog.eval('breed'))

See also Object.eval method

Infinity
A numeric value representing infinity.

Syntax Infinity

Description Infinity is a top-level property and is not associated with any object.

The initial value of Infinity is Number.POSITIVE_INFINITY . The value
Infinity (positive infinity) is greater than any other number including itself.
This value behaves mathematically like infinity; for example, anything
multiplied by Infinity is Infinity , and anything divided by Infinity is
0.

See also Number.NEGATIVE_INFINITY,Number.POSITIVE_INFINITY

Core property

Implemented in JavaScript 1.3 (In previous versions, Infinity was defined only as
a property of the Number object)

ECMA version ECMA-262
560 Client-Side JavaScript Reference

isFinite
isFinite
Evaluates an argument to determine whether it is a finite number.

Syntax isFinite(number)

Parameters

Description isFinite is a top-level function and is not associated with any object.

You can use this method to determine whether a number is a finite number.
The isFinite method examines the number in its argument. If the argument
is NaN, positive infinity or negative infinity, this method returns false ,
otherwise it returns true .

Examples You can check a client input to determine whether it is a finite number.

if(isFinite(ClientInput) == true)
{

/* take specific steps */
}

See also Number.NEGATIVE_INFINITY,Number.POSITIVE_INFINITY

isNaN
Evaluates an argument to determine if it is not a number.

Syntax isNaN(testValue)

Core function

Implemented in JavaScript 1.3

ECMA version ECMA-262

number The number to evaluate.

Core function

Implemented in JavaScript 1.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262
Chapter 2, Top-Level Properties and Functions 561

NaN
Parameters

Description isNaN is a top-level function and is not associated with any object.

On platforms that support NaN, the parseFloat and parseInt functions
return NaN when they evaluate a value that is not a number. isNaN returns true
if passed NaN, and false otherwise.

Examples The following example evaluates floatValue to determine if it is a number
and then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

See also Number.NaN , parseFloat , parseInt

NaN
A value representing Not-A-Number.

Syntax NaN

Description NaN is a top-level property and is not associated with any object.

The initial value of NaN is NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN . Use the
isNaN function instead.

testValue The value you want to evaluate.

Core property

Implemented in JavaScript 1.3 (In previous versions, NaN was defined only as a
property of the Number object)

ECMA version ECMA-262
562 Client-Side JavaScript Reference

Number
Several JavaScript methods (such as the Number constructor, parseFloat ,
and parseInt) return NaN if the value specified in the parameter is not a
number.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

See also isNaN , Number.NaN

Number
Converts the specified object to a number.

Syntax Number(obj)

Parameter

Description Number is a top-level function and is not associated with any object.

When the object is a Date object, Number returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

If obj is a string that does not contain a well-formed numeric literal, Number
returns NaN.

Example The following example converts the Date object to a numerical value:

d = new Date ("December 17, 1995 03:24:00")
alert (Number(d))

This displays a dialog box containing "819199440000."

See also Number

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

obj An object
Chapter 2, Top-Level Properties and Functions 563

parseFloat
parseFloat
Parses a string argument and returns a floating point number.

Syntax parseFloat(string)

Parameters

Description parseFloat is a top-level function and is not associated with any object.

parseFloat parses its argument, a string, and returns a floating point number.
If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal
point, or an exponent, it returns the value up to that point and ignores that
character and all succeeding characters. Leading and trailing spaces are
allowed.

If the first character cannot be converted to a number, parseFloat returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the isNaN function to determine if the result of parseFloat is NaN. If NaN
is passed on to arithmetic operations, the operation results will also be NaN.

Examples The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns NaN:

parseFloat("FF2")

Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parseFloat(string) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, NES 2.0: Returns NaN on all platforms if the first
character of the string specified in parseFloat(string) cannot be
converted to a number.

ECMA version ECMA-262

string A string that represents the value you want to parse.
564 Client-Side JavaScript Reference

parseInt
See also isNaN , parseInt

parseInt
Parses a string argument and returns an integer of the specified radix or base.

Syntax parseInt(string [, radix])

Parameters

Description parseInt is a top-level function and is not associated with any object.

The parseInt function parses its first argument, a string, and attempts to return
an integer of the specified radix (base). For example, a radix of 10 indicates to
convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes
above 10, the letters of the alphabet indicate numerals greater than 9. For
example, for hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. parseInt truncates numbers to integer values. Leading and
trailing spaces are allowed.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parseInt(string) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, LiveWire 2.0: Returns NaN on all platforms if the first
character of the string specified in parseInt(string) cannot be
converted to a number.

ECMA version ECMA-262

string A string that represents the value you want to parse.

radix An integer that represents the radix of the return value.
Chapter 2, Top-Level Properties and Functions 565

parseInt
If the radix is not specified or is specified as 0, JavaScript assumes the
following:

• If the input string begins with "0x" , the radix is 16 (hexadecimal).

• If the input string begins with "0" , the radix is eight (octal).

• If the input string begins with any other value, the radix is 10 (decimal).

If the first character cannot be converted to a number, parseInt returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the isNaN function to determine if the result of parseInt is NaN. If NaN is
passed on to arithmetic operations, the operation results will also be NaN.

Examples The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return NaN:

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

Even though the radix is specified differently, the following examples all return
17 because the input string begins with "0x" .

parseInt("0x11", 16)
parseInt("0x11", 0)
parseInt("0x11")

See also isNaN , parseFloat , Object.valueOf
566 Client-Side JavaScript Reference

String
String
Converts the specified object to a string.

Syntax String(obj)

Parameter

Description String is a top-level function and is not associated with any object.

The String method converts the value of any object into a string; it returns
the same value as the toString method of an individual object.

When the object is a Date object, String returns a more readable string
representation of the date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight
Time 1983.

Example The following example converts the Date object to a readable string.

D = new Date (430054663215)
alert (String(D))

This displays a dialog box containing "Thu Aug 18 04:37:43 GMT-0700 (Pacific
Daylight Time) 1983."

See also String

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

obj An object.
Chapter 2, Top-Level Properties and Functions 567

taint
taint
Adds tainting to a data element or script.

Syntax taint([dataElementName])

Parameters

Description taint is a top-level function and is not associated with any object.

Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user’s permission.

Use taint to mark data that otherwise is not tainted.

In some cases, control flow rather than data flow carries tainted information. In
these cases, taint is added to the script’s window. You can add taint to the
script's window by calling taint with no arguments.

taint does not modify its argument; instead, it returns a marked copy of the
value, or, for objects, an unmarked reference to the value.

Examples The following statement adds taint to a property so that a script cannot send it
to another server without the end user's permission:

taintedStatus=taint(window.defaultStatus)
// taintedStatus now cannot be sent in a URL or form post without
// the end user's permission

See also navigator.taintEnabled , untaint

Client-side function

Implemented in JavaScript 1.1

JavaScript 1.2: removed

dataElementName The property, variable, function, or object to taint. If omitted, taint
is added to the script itself.
568 Client-Side JavaScript Reference

undefined
undefined
The value undefined.

Syntax undefined

Description undefined is a top-level property and is not associated with any object.

A variable that has not been assigned a value is of type undefined. A method or
statement also returns undefined if the variable that is being evaluated does
not have an assigned value.

You can use undefined to determine whether a variable has a value. In the
following code, the variable x is not defined, and the if statement evaluates to
true.

var x
if(x == undefined) {

// these statements execute
}

undefined is also a primitive value.

unescape
Returns the ASCII string for the specified hexadecimal encoding value.

Syntax unescape(string)

Parameters

Core property

Implemented in JavaScript 1.3

ECMA version ECMA-262

Core function

Implemented in JavaScript 1.0, NES 1.0

ECMA version ECMA-262 compatible, except for Unicode characters.

string A string containing characters in the form "%xx" , where xx is a
2-digit hexadecimal number.
Chapter 2, Top-Level Properties and Functions 569

untaint
Description unescape is a top-level function and is not associated with any object.

The string returned by the unescape function is a series of characters in the
ISO-Latin-1 character set.

The escape and unescape methods do not use Unicode as specified by the
ECMA specification. For information, see the description of “Unicode” on
page 557.

Examples The following example returns "&" :

unescape("%26")

The following example returns "!#" :

unescape("%21%23")

See also escape

untaint
Removes tainting from a data element or script.

Syntax untaint([dataElementName])

Parameters

Description untaint is a top-level function and is not associated with any object.

Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user's permission.

Use untaint to clear tainting that marks data that should not to be sent by
other scripts to different servers.

Client-side function

Implemented in JavaScript 1.1

JavaScript 1.2: removed

dataElementName The property, variable, function, or object to remove tainting from.
If omitted, taint is removed from the script itself.
570 Client-Side JavaScript Reference

untaint
A script can untaint only data that originated in that script (that is, only data that
has the script's taint code or has the identity (null) taint code). If you use
untaint with a data element from another server's script (or any data that you
cannot untaint), untaint returns the data without change or error.

In some cases, control flow rather than data flow carries tainted information. In
these cases, taint is added to the script's window. You can remove taint from
the script's window by calling untaint with no arguments, if the window
contains taint only from the current window.

untaint does not modify its argument; instead, it returns an unmarked copy of
the value, or, for objects, an unmarked reference to the value.

Examples The following statement removes taint from a property so that a script can send
it to another server:

untaintedStatus=untaint(window.defaultStatus)
// untaintedStatus can now be sent in a URL or form post by other
// scripts

See also navigator.taintEnabled , taint
Chapter 2, Top-Level Properties and Functions 571

untaint
572 Client-Side JavaScript Reference

C h a p t e r

3
Chapter 3Event Handlers
This chapter contains the event handlers that are used with client-side objects
in JavaScript to evoke particular actions.

For general information on event handlers, see the Client-Side JavaScript
Guide.

The following table summarizes the event handlers. The name of an event
handler is the name of the event, preceded by “on.” For example, the event
handler for the focus event is onFocus .

Table 3.1 Event handlers

Event Event handler Description

Abort onAbort Executes JavaScript code when the user aborts the loading of an
image.

Blur onBlur Executes JavaScript code when a form element loses focus or
when a window or frame loses focus.

Change onChange Executes JavaScript code when a Select , Text , or Textarea
field loses focus and its value has been modified

Click onClick Executes JavaScript code when an object on a form is clicked.

DblClick onDblClick Executes JavaScript code when the user double-clicks a form
element or a link.
Chapter 3, Event Handlers 573

DragDrop onDragDrop Executes JavaScript code when the user drops an object onto the
browser window, such as dropping a file.

Error onError Executes JavaScript code when the loading of a document or
image causes an error.

Focus onFocus Executes JavaScript code when a window, frame, or frameset
receives focus or when a form element receives input focus.

KeyDown onKeyDown Executes JavaScript code when the user depresses a key.

KeyPress onKeyPress Executes JavaScript code when the user presses or holds down a
key.

KeyUp onKeyUp Executes JavaScript code when the user releases a key.

Load onLoad Executes JavaScript code when the browser finishes loading a
window or all frames within a FRAMESET tag.

MouseDown onMouseDown Executes JavaScript code when the user depresses a mouse button.

MouseMove onMouseMove Executes JavaScript code when the user moves the cursor.

MouseOut onMouseOut Executes JavaScript code each time the mouse pointer leaves an
area (client-side image map) or link from inside that area or link.

MouseOver onMouseOver Executes JavaScript code once each time the mouse pointer moves
over an object or area from outside that object or area.

MouseUp onMouseUp Executes JavaScript code when the user releases a mouse button.

Move onMove Executes JavaScript code when the user or script moves a window
or frame.

Reset onReset Executes JavaScript code when a user resets a form (clicks a Reset
button).

Resize onResize Executes JavaScript code when a user or script resizes a window
or frame.

Select onSelect Executes JavaScript code when a user selects some of the text
within a text or textarea field.

Submit onSubmit Executes JavaScript code when a user submits a form.

Unload onUnload Executes JavaScript code when the user exits a document.

Table 3.1 Event handlers

Event Event handler Description
574 Client-Side JavaScript Reference

onAbort
onAbort
Executes JavaScript code when an abort event occurs; that is, when the user
aborts the loading of an image (for example by clicking a link or clicking the
Stop button).

Syntax onAbort=" handlerText "

Parameters

Event properties
used

Examples In the following example, an onAbort handler in an Image object displays a
message when the user aborts the image load:

<IMG NAME="aircraft" SRC="f15e.gif"
onAbort="alert('You didn\'t get to see the image!')">

See also event , onError , onLoad

Event handler for Image

Implemented in JavaScript 1.1

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 3, Event Handlers 575

onBlur
onBlur
Executes JavaScript code when a blur event occurs; that is, when a form
element loses focus or when a window or frame loses focus.

Syntax onBlur=" handlerText "

Parameters

Description The blur event can result from a call to the window.blur method or from the
user clicking the mouse on another object or window or tabbing with the
keyboard.

For windows, frames, and framesets, onBlur specifies JavaScript code to
execute when a window loses focus.

A frame’s onBlur event handler overrides an onBlur event handler in the BODY
tag of the document loaded into frame.

Note In JavaScript 1.1, on some platforms placing an onBlur event handler in a
FRAMESET tag has no effect.

Event properties
used

Event handler for Button , Checkbox , FileUpload , Layer , Password , Radio ,
Reset , Select , Submit , Text , Textarea , window

Implemented in JavaScript 1.0

JavaScript 1.1: event handler of Button , Checkbox ,
FileUpload , Frame , Password , Radio , Reset , Submit ,
and window

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
576 Client-Side JavaScript Reference

onBlur
Examples Example 1: Validate form input. In the following example, userName is a
required text field. When a user attempts to leave the field, the onBlur event
handler calls the required function to confirm that userName has a legal
value.

<INPUT TYPE="text" VALUE="" NAME="userName"
onBlur="required(this.value)">

Example 2: Change the background color of a window. In the following
example, a window’s onBlur and onFocus event handlers change the
window’s background color depending on whether the window has focus.

<BODY BGCOLOR="lightgrey"
onBlur="document.bgColor='lightgrey'"
onFocus="document.bgColor='antiquewhite'">

Example 3: Change the background color of a frame. The following
example creates four frames. The source for each frame, onblur2.html has the
BODY tag with the onBlur and onFocus event handlers shown in Example 1.
When the document loads, all frames are light grey. When the user clicks a
frame, the onFocus event handler changes the frame’s background color to
antique white. The frame that loses focus is changed to light grey. Note that the
onBlur and onFocus event handlers are within the BODY tag, not the FRAME
tag.

<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC=onblur2.html NAME="frame1">
<FRAME SRC=onblur2.html NAME="frame2">
<FRAME SRC=onblur2.html NAME="frame3">
<FRAME SRC=onblur2.html NAME="frame4">
</FRAMESET>

The following code has the same effect as the previous code, but is
implemented differently. The onFocus and onBlur event handlers are
associated with the frame, not the document. The onBlur and onFocus event
handlers for the frame are specified by setting the onblur and onfocus
properties.

<SCRIPT>
function setUpHandlers() {

for (var i = 0; i < frames.length; i++) {
frames[i].onfocus=new Function("document.bgColor='antiquewhite'")
frames[i].onblur=new Function("document.bgColor='lightgrey'")

}
}
</SCRIPT>
Chapter 3, Event Handlers 577

onChange
<FRAMESET ROWS="50%,50%" COLS="40%,60%" onLoad=setUpHandlers()>
<FRAME SRC=onblur2.html NAME="frame1">
<FRAME SRC=onblur2.html NAME="frame2">
<FRAME SRC=onblur2.html NAME="frame3">
<FRAME SRC=onblur2.html NAME="frame4">
</FRAMESET>

Example 4: Close a window. In the following example, a window’s onBlur
event handler closes the window when the window loses focus.

<BODY onBlur="window.close()">
This is some text
</BODY>

See also event , onChange , onFocus

onChange
Executes JavaScript code when a change event occurs; that is, when a Select ,
Text , or Textarea field loses focus and its value has been modified.

Syntax onChange=" handlerText "

Parameters

Description Use onChange to validate data after it is modified by a user.

Event properties
used

Event handler for FileUpload , Select , Text , Textarea

Implemented in JavaScript 1.0 event handler for Select , Text , and Textarea

JavaScript 1.1: added as event handler of FileUpload

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
578 Client-Side JavaScript Reference

onClick
Examples In the following example, userName is a text field. When a user changes the
text and leaves the field, the onChange event handler calls the checkValue
function to confirm that userName has a legal value.

<INPUT TYPE="text" VALUE="" NAME="userName"
onChange="checkValue(this.value)">

See also event , onBlur , onFocus

onClick
Executes JavaScript code when a click event occurs; that is, when an object on
a form is clicked. (A click event is a combination of the MouseDown and
MouseUp events).

Syntax onClick=" handlerText "

Parameters

Event handler for Button , document , Checkbox , Link , Radio , Reset , Submit

Implemented in JavaScript 1.0

JavaScript 1.1: added the ability to return false to cancel the action
associated with a click event

handlerText JavaScript code or a call to a JavaScript function.
Chapter 3, Event Handlers 579

onClick
Event properties
used

Description For checkboxes, links, radio buttons, reset buttons, and submit buttons,
onClick can return false to cancel the action normally associated with a click
event.

For example, the following code creates a link that, when clicked, displays a
confirm dialog box. If the user clicks the link and then chooses cancel, the page
specified by the link is not loaded.

<A HREF = "http://home.netscape.com/"
onClick="return confirm('Load Netscape home page?')">

Netscape

If the event handler returns false, the default action of the object is canceled as
follows:

• Buttons—no default action; nothing is canceled

• Radio buttons and checkboxes—nothing is set

• Submit buttons—form is not submitted

• Reset buttons—form is not reset

Note In JavaScript 1.1, on some platforms, returning false in an onClick event
handler for a reset button has no effect.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

When a link is
clicked,
layerX ,
layerY ,
pageX , pageY ,
screenX ,
screenY

Represent the cursor location at the time the event occurred.

which Represents 1 for a left-mouse click and 3 for a right-mouse click.

modifiers Contains the list of modifier keys held down when the event
occurred.
580 Client-Side JavaScript Reference

onClick
Examples Example 1: Call a function when a user clicks a button. Suppose you have
created a JavaScript function called compute . You can execute the compute
function when the user clicks a button by calling the function in the onClick
event handler, as follows:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

In the preceding example, the keyword this refers to the current object; in this
case, the Calculate button. The construct this.form refers to the form
containing the button.

For another example, suppose you have created a JavaScript function called
pickRandomURL that lets you select a URL at random. You can use onClick to
specify a value for the HREF attribute of the A tag dynamically, as shown in the
following example:

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="window.status='Pick a random URL'; return true">

Go!

In the above example, onMouseOver specifies a custom message for the
browser’s status bar when the user places the mouse pointer over the Go!
anchor. As this example shows, you must return true to set the window.status
property in the onMouseOver event handler.

Example 2: Cancel the checking of a checkbox. The following example
creates a checkbox with onClick . The event handler displays a confirm that
warns the user that checking the checkbox purges all files. If the user chooses
Cancel, onClick returns false and the checkbox is not checked.

<INPUT TYPE="checkbox" NAME="check1" VALUE="check1"
onClick="return confirm('This purges all your files. Are you sure?')"> Remove files

See also event
Chapter 3, Event Handlers 581

onDblClick
onDblClick
Executes JavaScript code when a DblClick event occurs; that is, when the user
double-clicks a form element or a link.

Syntax onDblClick=" handlerText "

Parameters

Note DblClick is not implemented on the Macintosh.

Event properties
used

Examples The following example opens an alert dialog box when a user double-clicks a
button:

<form>
<INPUT Type="button" Value="Double Click Me!"

onDblClick="alert('You just double clicked me!')">
</form>

See also event

Event handler for document , Link

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

Represent the cursor location at the time the event occurred.

which Represents 1 for a left-mouse double-click and 3 for a right-
mouse double-click.

modifiers Contains the list of modifier keys held down when the event
occurred.
582 Client-Side JavaScript Reference

onDragDrop
onDragDrop
Executes JavaScript code when a DragDrop event occurs; that is, when the user
drops an object onto the browser window, such as dropping a file.

Syntax onDragDrop=" handlerText "

Parameters

Event properties
used

Security Getting the data property of the DragDrop event requires the
UniversalBrowserRead privilege. For information on security, see the Client-
Side JavaScript Guide.

Description The DragDrop event is fired whenever a system item (file, shortcut, and so on)
is dropped onto the browser window using the native system's drag and drop
mechanism. The normal response for the browser is to attempt to load the item
into the browser window. If the event handler for the DragDrop event returns
true, the browser loads the item normally. If the event handler returns false, the
drag and drop is canceled.

See also event

Event handler for window

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

data Returns an Array of Strings containing the URLs of the dropped
objects.

modifiers Contains the list of modifier keys held down when the event
occurred.

screenX,
screenY

Represent the cursor location at the time the event occurred.
Chapter 3, Event Handlers 583

onError
onError
Executes JavaScript code when an error event occurs; that is, when the loading
of a document or image causes an error.

Syntax onError=" handlerText "

Parameters

Description An error event occurs only when a JavaScript syntax or runtime error occurs,
not when a browser error occurs. For example, if you try set
window.location.href='notThere.html' and notThere.html does not
exist, the resulting error message is a browser error message; therefore,
onError would not intercept that message. However, an error event is
triggered by a bad URL within an IMG tag or by corrupted image data.

window.onerror applies only to errors that occur in the window containing
window.onerror , not in other windows.

onError can be any of the following:

• null to suppress all JavaScript error dialogs. Setting window.onerror to null
means your users won’t see JavaScript errors caused by your own code.

• The name of a function that handles errors (arguments are message text,
URL, and line number of the offending line). To suppress the standard
JavaScript error dialog, the function must return true. See Example 3 below.

• A variable or property that contains null or a valid function reference.

If you write an error-handling function, you have three options for reporting
errors:

• Trace errors but let the standard JavaScript dialog report them (use an error
handling function that returns false or does not return a value)

• Report errors yourself and disable the standard error dialog (use an error
handling function that returns true)

• Turn off all error reporting (set the onError event handler to null)

Event handler for Image , window

Implemented in JavaScript 1.1

handlerText JavaScript code or a call to a JavaScript function.
584 Client-Side JavaScript Reference

onError
Event properties
used

Examples Example 1: Null event handler. In the following IMG tag, the code
onError="null" suppresses error messages if errors occur when the image
loads.

<IMG NAME="imageBad1" SRC="corrupt.gif" ALIGN="left" BORDER="2"
onError="null">

Example 2: Null event handler for a window. The onError event handler
for windows cannot be expressed in HTML. Therefore, you must spell it all
lowercase and set it in a SCRIPT tag. The following code assigns null to the
onError handler for the entire window, not just the Image object. This
suppresses all JavaScript error messages, including those for the Image object.

<SCRIPT>
window.onerror=null
</SCRIPT>

However, if the Image object has a custom onError event handler, the handler
would execute if the image had an error. This is because
window.onerror=null suppresses JavaScript error messages, not onError
event handlers.

<SCRIPT>
window.onerror=null
function myErrorFunc() {

alert("The image had a nasty error.")
}
</SCRIPT>
<IMG NAME="imageBad1" SRC="corrupt.gif" ALIGN="left" BORDER="2"

onError="myErrorFunc()">

In the following example, window.onerror=null suppresses all error
reporting. Without onerror=null , the code would cause a stack overflow error
because of infinite recursion.

<SCRIPT>
window.onerror = null;
function testErrorFunction() {

testErrorFunction();
}

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 3, Event Handlers 585

onError
</SCRIPT>
<BODY onload="testErrorFunction()">
test message
</BODY>

Example 3: Error handling function. The following example defines a
function, myOnError , that intercepts JavaScript errors. The function uses three
arrays to store the message, URL, and line number for each error. When the
user clicks the Display Error Report button, the displayErrors function opens
a window and creates an error report in that window. Note that the function
returns true to suppress the standard JavaScript error dialog.

<SCRIPT>
window.onerror = myOnError

msgArray = new Array()
urlArray = new Array()
lnoArray = new Array()

function myOnError(msg, url, lno) {
msgArray[msgArray.length] = msg
urlArray[urlArray.length] = url
lnoArray[lnoArray.length] = lno
return true

}

function displayErrors() {
win2=window.open('','window2','scrollbars=yes')
win2.document.writeln('Error Report<P>')

for (var i=0; i < msgArray.length; i++) {
win2.document.writeln('Error in file: ' + urlArray[i] + '
')
win2.document.writeln('Line number: ' + lnoArray[i] + '
')
win2.document.writeln('Message: ' + msgArray[i] + '<P>')

}
win2.document.close()

}
</SCRIPT>

<BODY onload="noSuchFunction()">
<FORM>

<INPUT TYPE="button" VALUE="This button has a syntax error"

onClick="alert('unterminated string)">

<P><INPUT TYPE="button" VALUE="Display Error Report"
onClick="displayErrors()">

</FORM>
586 Client-Side JavaScript Reference

onFocus
This example produces the following output:

Error Report

Error in file: file:///c%7C/temp/onerror.html
Line number: 34
Message: unterminated string literal

Error in file: file:///c%7C/temp/onerror.html
Line number: 34
Message: missing) after argument list

Error in file: file:///c%7C/temp/onerror.html
Line number: 30
Message: noSuchFunction is not defined

Example 4: Event handler calls a function. In the following IMG tag,
onError calls the function badImage if errors occur when the image loads.

<SCRIPT>
function badImage(theImage) {

alert('Error : ' + theImage.nam e + ' did not load properly.')
}
</SCRIPT>
<FORM>
<IMG NAME="imageBad2" SRC="orca.gif" ALIGN="left" BORDER="2"

onError="badImage(this)">
</FORM>

See also event , onAbort , onLoad

onFocus
Executes JavaScript code when a focus event occurs; that is, when a window,
frame, or frameset receives focus or when a form element receives input focus.

Syntax onFocus=" handlerText "

Event handler for Button , Checkbox , FileUpload , Layer , Password , Radio ,
Reset , Select , Submit , Text , Textarea , window

Implemented in JavaScript 1.0

JavaScript 1.1: event handler of Button, Checkbox,
FileUpload, Frame, Password, Radio, Reset,
Submit, and window

JavaScript 1.2: event handler of Layer
Chapter 3, Event Handlers 587

onFocus
Parameters

Description The focus event can result from a focus method or from the user clicking the
mouse on an object or window or tabbing with the keyboard. Selecting within
a field results in a select event, not a focus event. onFocus executes JavaScript
code when a focus event occurs.

A frame’s onFocus event handler overrides an onFocus event handler in the
BODY tag of the document loaded into frame.

Note that placing an alert in an onFocus event handler results in recurrent
alerts: when you press OK to dismiss the alert, the underlying window gains
focus again and produces another focus event.

Note In JavaScript 1.1, on some platforms, placing an onFocus event handler in a
FRAMESET tag has no effect.

Event properties
used

Examples The following example uses an onFocus handler in the valueField Textarea
object to call the valueCheck function.

<INPUT TYPE="textarea" VALUE="" NAME="valueField"
onFocus="valueCheck()">

See also the examples for onBlur .

See also event , onBlur , onChange

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
588 Client-Side JavaScript Reference

onKeyDown
onKeyDown
Executes JavaScript code when a KeyDown event occurs; that is, when the user
depresses a key.

Syntax onKeyDown=" handlerText "

Parameters

Event properties
used

Description A KeyDown event always occurs before a KeyPress event. If onKeyDown returns
false, no KeyPress events occur. This prevents KeyPress events occurring due
to the user holding down a key.

Event handler for document , Image , Link , Textarea

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

For an event over a window, these represent the cursor location
at the time the event occurred. For an event over a form, they
represent the position of the form element.

which Represents the ASCII value of the key pressed. To get the actual
letter, number, or symbol of the pressed key, use the
String.fromCharCode method. To set this property when
the ASCII value is unknown, use the String.charCodeAt
method.

modifiers Contains the list of modifier keys held down when the event
occurred.
Chapter 3, Event Handlers 589

onKeyPress
Examples The following example uses the blockA function to evaluate characters
entered from the keyboard in the textentry text box. If a user enters either
“a” or “A”, the function returns false and the text box does not display the
value.

<form name="main">
<input name="textentry" type=text size=10 maxlength=10>

</form>

<script>
function blockA(e) {

var keyChar = String.fromCharCode(e.which);
if (keyChar == 'A' || keyChar == 'a')

return false;
}

document.main.textentry.onkeydown = blockA;
</script>

In the function, the which property of the event assigns the ASCII value of the
key the user presses to the keyChar variable. The if statement evaluates
keyChar and returns false for the specified characters.

See also event , onKeyPress , onKeyUp

onKeyPress
Executes JavaScript code when a KeyPress event occurs; that is, when the user
presses or holds down a key.

Syntax onKeyPress=" handlerText "

Parameters

Event handler for document , Image , Link , Textarea

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.
590 Client-Side JavaScript Reference

onKeyPress
Event properties
used

Description A KeyPress event occurs immediately after a KeyDown event only if onKeyDown

returns something other than false. A KeyPress event repeatedly occurs until
the user releases the key. You can cancel individual KeyPress events.

Examples In this example, the captureEvents method catches keyboard input and the
onKeyPress handler calls the blockA function to examine the keystrokes. If
the keystrokes are “a” or “z”, the function scrolls the Navigator window.

function blockA(e) {
var keyChar = String.fromCharCode(e.which);
if (keyChar == 'A' || keyChar == 'a')

self.scrollBy(10,10);

else if(keyChar == 'Z' || keyChar == 'z')
self.scrollBy(-10,-10);

else return false;
}
document.captureEvents(Event.KEYPRESS);
document.onkeypress = blockA;

See also event , onKeyDown, onKeyUp

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

For an event over a window, these represent the cursor location
at the time the event occurred. For an event over a form, they
represent the position of the form element.

which Represents the ASCII value of the key pressed. To get the actual
letter, number, or symbol of the pressed key, use the
String.fromCharCode method. To set this property when
the ASCII value is unknown, use the String.charCodeAt
method.

modifiers Contains the list of modifier keys held down when the event
occurred.
Chapter 3, Event Handlers 591

onKeyUp
onKeyUp
Executes JavaScript code when a KeyUp event occurs; that is, when the user
releases a key.

Syntax onKeyUp=" handlerText "

Parameters

Event properties
used

Event handler for document , Image , Link , Textarea

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

For an event over a window, these represent the cursor location
at the time the event occurred. For an event over a form, they
represent the position of the form element.

which Represents the ASCII value of the key pressed. To get the actual
letter, number, or symbol of the pressed key, use the
String.fromCharCode method. To set this property when
the ASCII value is unknown, use the String.charCodeAt
method.

modifiers Contains the list of modifier keys held down when the event
occurred.
592 Client-Side JavaScript Reference

onLoad
Examples In this example, the captureEvents method catches keyboard input and the
onKeyUp handler calls the Key_Up function. An alert method within the
function opens a dialog box to display the value of the keystroke.

function Key_Up(e) {
var keyChar = String.fromCharCode(e.which);
alert("Hold '" + keyChar +"' again for me, okay?");

}
document.onkeyup=Key_Up;
document.captureEvents(Event.KEYUP);

See also event

onLoad
Executes JavaScript code when a load event occurs; that is, when the browser
finishes loading a window or all frames within a FRAMESET tag.

Syntax onLoad=" handlerText "

Parameters

Description Use the onLoad event handler within either the BODY or the FRAMESET tag, for
example, <BODY onLoad="..."> .

In a FRAMESET and FRAME relationship, an onLoad event within a frame (placed
in the BODY tag) occurs before an onLoad event within the FRAMESET (placed in
the FRAMESET tag).

For images, the onLoad event handler indicates the script to execute when an
image is displayed. Do not confuse displaying an image with loading an image.
You can load several images, then display them one by one in the same Image
object by setting the object’s src property. If you change the image displayed
in this way, onLoad executes every time an image is displayed, not just when
the image is loaded into memory.

Event handler for Image , Layer , window

Implemented in JavaScript 1.0

JavaScript 1.1: event handler of Image

handlerText JavaScript code or a call to a JavaScript function.
Chapter 3, Event Handlers 593

onLoad
If you specify an onLoad event handler for an Image object that displays a
looping GIF animation (multi-image GIF), each loop of the animation triggers
the onLoad event, and the event handler executes once for each loop.

You can use the onLoad event handler to create a JavaScript animation by
repeatedly setting the src property of an Image object. See Image for
information.

Event properties
used

Examples Example 1: Display message when page loads. In the following example,
the onLoad event handler displays a greeting message after a Web page is
loaded.

<BODY onLoad="window.alert("Welcome to the Brave New World home page!")>

Example 2: Display alert when image loads. The following example creates
two Image objects, one with the Image constructor and one with the IMG tag.
Each Image object has an onLoad event handler that calls the displayAlert
function, which displays an alert. For the image created with the IMG tag, the
alert displays the image name. For the image created with the Image
constructor, the alert displays a message without the image name. This is
because the onLoad handler for an object created with the Image constructor
must be the name of a function, and it cannot specify parameters for the
displayAlert function.

<SCRIPT>
imageA = new Image(50,50)
imageA.onload=displayAlert
imageA.src="cyanball.gif"

function displayAlert(theImage) {
if (theImage==null) {

alert('An image loaded')
}
else alert(theImage.nam e + ' has been loaded.')

}
</SCRIPT>

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

width, height For an event over a window, but not over a layer, these
represent the width and height of the window.
594 Client-Side JavaScript Reference

onLoad
<IMG NAME="imageB" SRC="greenball.gif" ALIGN="top"
onLoad=displayAlert(this)>

Example 3: Looping GIF animation. The following example displays an
image, birdie.gif , that is a looping GIF animation. The onLoad event handler
for the image increments the variable cycles , which keeps track of the number
of times the animation has looped. To see the value of cycles , the user clicks
the button labeled Count Loops.

<SCRIPT>
var cycles=0
</SCRIPT>
<IMG ALIGN="top" SRC="birdie.gif" BORDER=0

onLoad="++cycles">
<INPUT TYPE="button" VALUE="Count Loops"

onClick="alert('The animation has loope d ' + cycles + ' times.')">

Example 4: Change GIF animation displayed. The following example uses
an onLoad event handler to rotate the display of six GIF animations. Each
animation is displayed in sequence in one Image object. When the document
loads, !anim0.html is displayed. When that animation completes, the onLoad
event handler causes the next file, !anim1.html , to load in place of the first
file. After the last animation, !anim5.html , completes, the first file is again
displayed. Notice that the changeAnimation function does not call itself after
changing the src property of the Image object. This is because when the src
property changes, the image’s onLoad event handler is triggered and the
changeAnimation function is called.

<SCRIPT>
var whichImage=0
var maxImages=5

function changeAnimation(theImage) {
++whichImage
if (whichImage <= maxImages) {

var imageName="!anim" + whichImage + ".gif"
theImage.src=imageName

} else {
whichImage=-1
return

}
}
</SCRIPT>

<IMG NAME="changingAnimation" SRC="!anim0.gif" BORDER=0 ALIGN="top"
onLoad="changeAnimation(this)">

See also the examples for Image .
Chapter 3, Event Handlers 595

onMouseDown
See also event , onAbort , onError , onUnload

onMouseDown
Executes JavaScript code when a MouseDown event occurs; that is, when the
user depresses a mouse button.

Syntax onMouseDown=" handlerText "

Parameters

Event properties
used

Description If onMouseDown returns false, the default action (entering drag mode, entering
selection mode, or arming a link) is canceled.

Arming is caused by a MouseDown over a link. When a link is armed it changes
color to represent its new state.

Event handler for Button , document , Link

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

Represent the cursor location at the time the MouseDown event
occurred.

which Represents 1 for a left-mouse-button down and 3 for a right-
mouse-button down.

modifiers Contains the list of modifier keys held down when the
MouseDown event occurred.
596 Client-Side JavaScript Reference

onMouseDown
Examples This example lets users move an image on an HTML page by dragging it with
the mouse. Your HTML code defines the image and positions it in a layer called
container1 . In your JavaScript code, event handlers set the position
properties of container1 as users drag the image, creating the animation.

Using style sheets, the image is initially defined and positioned as follows:

<HEAD>
<STYLE type="text/css">

#container1 { position:absolute; left:200; top:200}
</STYLE>
</HEAD>

<BODY>
<P ID="container1">

</P>
</BODY>

In the previous HTML code, the ID attribute for the P element which contains
the image is set to container1 , making container1 a unique identifier for
the paragraph and the image. The STYLE tag creates a layer for container1
and positions it.

The following JavaScript code defines onMouseDown, onMouseUp, and
onMouseMove event handlers:
Chapter 3, Event Handlers 597

onMouseDown
<SCRIPT>
container1.captureEvents(Event.MOUSEUP|Event.MOUSEDOWN);
container1.onmousedown=DRAG_begindrag;
container1.onmouseup=DRAG_enddrag;
var DRAG_lastX, DRAG_lastY, DRAG_dragging;
function DRAG_begindrag(e) {

if (e.which == 1) {
window.captureEvents(Event.MOUSEMOVE);

window.onmousemove=DRAG_drag;
DRAG_lastX=e.pageX;
DRAG_lastY=e.pageY;
DRAG_dragging=true;
return false;

}
else {

/*Do any right mouse button processing here*/
return true;

}
}
function DRAG_enddrag(e) {

if (e.which == 1) {
window.releaseEvents(Event.MOUSEMOVE);

window.onmousemove=null
DRAG_dragging=false;
return false;

}
else {

/*Do any right mouse button processing here*/
return true;

}
}
function DRAG_drag(e) {

if (DRAG_dragging) {
/*This function called only if MOUSEMOVEs are captured*/
moveBy(e.pageX-DRAG_lastX, e.pageY-DRAG_lastY);
DRAG_lastX = e.pageX;
DRAG_lastY = e.pageY;
return false;

}
else {

return true;
}

}
</SCRIPT>

In the previous code, the captureEvents method captures MouseUp and
MouseDown events. The DRAG_begindrag and DRAG_enddrag functions
are respectively called to handle these events.
598 Client-Side JavaScript Reference

onMouseMove
When a user presses the left mouse button, the DRAG_begindrag function
starts capturing MouseMove events and tells the DRAG_drag function to
handle them. It then assigns the value of the MouseDown event’s pageX
property to DRAG_lastX , the value of the pageY property to DRAG_lastY ,
and true to DRAG_dragging .

The DRAG_drag function evaluates DRAG_dragging to make sure the
MouseMove event was captured by DRAG_begindrag , then it uses the
moveBy method to position the object, and reassigns values to DRAG_lastX
and DRAG_lastY .

When the user releases the left mouse button, the DRAG_enddrag function
stops capturing MouseMove events. DRAG_enddrag then makes sure no other
functions are called by setting onmousemove to Null and DRAG_dragging
to false .

See also event

onMouseMove
Executes JavaScript code when a MouseMove event occurs; that is, when the
user moves the cursor.

Syntax onMouseMove=" handlerText "

Parameters

Event of Because mouse movement happens so frequently, by default, onMouseMove is
not an event of any object. You must explicitly set it to be associated with a
particular object.

Event handler for None

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.
Chapter 3, Event Handlers 599

onMouseOut
Event properties
used

Description The MouseMove event is sent only when a capture of the event is requested by
an object. For information on events, see the Client-Side JavaScript Guide.

Examples See the examples for onMouseDown.

See also event , document.captureEvents

onMouseOut
Executes JavaScript code when a MouseOut event occurs; that is, each time the
mouse pointer leaves an area (client-side image map) or link from inside that
area or link.

Syntax onMouseOut=" handlerText "

Parameters

Description If the mouse moves from one area into another in a client-side image map,
you’ll get onMouseOut for the first area, then onMouseOver for the second.

Area tags that use onMouseOut must include the HREF attribute within the AREA
tag.

You must return true within the event handler if you want to set the status or
defaultStatus properties with onMouseOver .

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

Represent the cursor location at the time the MouseMove event
occurred.

Event handler for Layer , Link

Implemented in JavaScript 1.1

handlerText JavaScript code or a call to a JavaScript function.
600 Client-Side JavaScript Reference

onMouseOver
Event properties
used

Examples See the examples for Link .

See also event , onMouseOver

onMouseOver
Executes JavaScript code when a MouseOver event occurs; that is, once each
time the mouse pointer moves over an object or area from outside that object
or area.

Syntax onMouseOver=" handlerText "

Parameters

Description If the mouse moves from one area into another in a client-side image map,
you’ll get onMouseOut for the first area, then onMouseOver for the second.

Area tags that use onMouseOver must include the HREF attribute within the
AREA tag.

You must return true within the event handler if you want to set the status or
defaultStatus properties with onMouseOver .

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

Represent the cursor location at the time the MouseOut event
occurred.

Event handler for Layer , Link

Implemented in JavaScript 1.0

JavaScript 1.1: event handler of Area

handlerText JavaScript code or a call to a JavaScript function.
Chapter 3, Event Handlers 601

onMouseUp
Event properties
used

Examples By default, the HREF value of an anchor displays in the status bar at the bottom
of the browser when a user places the mouse pointer over the anchor. In the
following example, onMouseOver provides the custom message “Click this if
you dare.”

<A HREF="http://home.netscape.com/"
onMouseOver="window.status='Click this if you dare!'; return true">

Click me

See onClick for an example of using onMouseOver when the A tag’s HREF
attribute is set dynamically.

See also the examples for Link .

See also event , onMouseOut

onMouseUp
Executes JavaScript code when a MouseUp event occurs; that is, when the user
releases a mouse button.

Syntax onMouseUp=" handlerText "

Parameters

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

Represent the cursor location at the time the MouseOver event
occurred.

Event handler for Button , document , Link

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.
602 Client-Side JavaScript Reference

onMove
Event properties
used

Description If onMouseUp returns false, the default action is canceled. For example, if
onMouseUp returns false over an armed link, the link is not triggered. Also, if
MouseUp occurs over an unarmed link (possibly due to onMouseDown returning
false), the link is not triggered.

Note Arming is caused by a MouseDown over a link. When a link is armed it changes
color to represent its new state.

Examples See the examples for onMouseDown.

See also event

onMove
Executes JavaScript code when a move event occurs; that is, when the user or
script moves a window or frame.

Syntax onMove=" handlerText "

Parameters

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX,
layerY,
pageX, pageY,
screenX,
screenY

Represent the cursor location at the time the MouseUp event
occurred.

which Represents 1 for a left-mouse-button up and 3 for a right-mouse-
button up.

modifiers Contains the list of modifier keys held down when the
MouseUp event occurred.

Event handler for window

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.
Chapter 3, Event Handlers 603

onMove
Event properties
used

Examples In this example, the open_now function creates the myWin window and
captures Move events. The onMove handler calls another function which
displays a message when a user moves myWin.

function open_now(){
var myWin;

myWin=window.open("","displayWindow","width=400,height=400,menubar=no,
location=no,alwaysRaised=yes");

var text="<html><head><title>Test</title></head>"
+"<body bgcolor=white><h1>Please move this window</h1></body>"
+"</html>";

myWin.document.write(text);
myWin.captureEvents(Event.MOVE);
myWin.onmove=fun2;

}

function fun2(){
alert("Hey you moved me!");
this.focus(); //'this' points to the current object

}

See also event

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

screenX,
screenY

Represent the position of the top-left corner of the window or
frame.
604 Client-Side JavaScript Reference

onReset
onReset
Executes JavaScript code when a reset event occurs; that is, when a user resets
a form (clicks a Reset button).

Syntax onReset=" handlerText "

Parameters

Examples The following example displays a Text object with the default value “CA” and
a reset button. If the user types a state abbreviation in the Text object and then
clicks the reset button, the original value of “CA” is restored. The form’s
onReset event handler displays a message indicating that defaults have been
restored.

<FORM NAME="form1" onReset="alert('Defaults have been restored.')">
State:
<INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2"><P>
<INPUT TYPE="reset" VALUE="Clear Form" NAME="reset1">
</FORM>

Event properties
used

See also event , Form.reset , Reset

Event handler for Form

Implemented in JavaScript 1.1

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 3, Event Handlers 605

onResize
onResize
Executes JavaScript code when a resize event occurs; that is, when a user or
script resizes a window or frame.

Syntax onResize=" handlerText "

Parameters

Event properties
used

Description This event is sent after HTML layout completes within the new window inner
dimensions. This allows positioned elements and named anchors to have their
final sizes and locations queried, image SRC properties can be restored
dynamically, and so on.

Examples In this example, the open_now function creates the myWin window and
captures Resize events. The onResize handler calls the alert_me function
which displays a message when a user resizes myWin.

function open_now(){
var myWin;

myWin=window.open("","displayWin","width=400,height=300,resizable=yes,

menubar=no,location=no,alwaysRaised=yes");
var text="<html><head><title>Test</title></head>"

+"<body bgcolor=white><h1>Please resize me</h1></body>"
+"</html>";

myWin.document.write(text);
myWin.captureEvents(Event.RESIZE);
myWin.onresize=alert_me;

}

Event handler for window

Implemented in JavaScript 1.2

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

width, height Represent the width and height of the window or frame.
606 Client-Side JavaScript Reference

onSelect
function alert_me(){
alert("You resized me! \nNow my outer width: " + this.outerWidth +

"\n and my outer height: " +this.outerHeight);
this.focus();

}

See also event

onSelect
Executes JavaScript code when a select event occurs; that is, when a user
selects some of the text within a text or textarea field.

Syntax onSelect=" handlerText "

Parameters

Event properties
used

Examples The following example uses onSelect in the valueField Text object to call
the selectState function.

<INPUT TYPE="text" VALUE="" NAME="valueField" onSelect="selectState()">

See also event

Event handler for Text , Textarea

Implemented in JavaScript 1.0

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 3, Event Handlers 607

onSubmit
onSubmit
Executes JavaScript code when a submit event occurs; that is, when a user
submits a form.

Syntax onSubmit=" handlerText "

Parameters

Security Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

Description You can use onSubmit to prevent a form from being submitted; to do so, put a
return statement that returns false in the event handler. Any other returned
value lets the form submit. If you omit the return statement, the form is
submitted.

Event properties
used

Examples In the following example, onSubmit calls the validate function to evaluate
the data being submitted. If the data is valid, the form is submitted; otherwise,
the form is not submitted.

<FORM onSubmit="return validate(this)">
...
</FORM>

See also the examples for Form.

See also event , Submit , Form.submit

Event handler for Form

Implemented in JavaScript 1.0

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
608 Client-Side JavaScript Reference

onUnload
onUnload
Executes JavaScript code when an unload event occurs; that is, when the user
exits a document.

Syntax onUnload=" handlerText "

Parameters

Description Use onUnload within either the BODY or the FRAMESET tag, for example, <BODY

onUnload="..."> .

In a frameset and frame relationship, an onUnload event within a frame (placed
in the BODY tag) occurs before an onUnload event within the frameset (placed
in the FRAMESET tag).

Event properties
used

Examples In the following example, onUnload calls the cleanUp function to perform
some shutdown processing when the user exits a Web page:

<BODY onUnload="cleanUp()">

See also onLoad

For general information on event handlers, see the Client-Side JavaScript Guide.

For information about the event object, see event .

Event handler for window

Implemented in JavaScript 1.0

handlerText JavaScript code or a call to a JavaScript function.

Property Description

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 3, Event Handlers 609

onUnload
610 Client-Side JavaScript Reference

2
Language Elements
• Statements

• Operators

612 Client-Side JavaScript Reference

C h a p t e r

4
Chapter 4Statements
This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in
square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.
Chapter 4, Statements 613

The following table lists statements available in JavaScript.

Table 4.1 JavaScript statements.

break Terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

comment Notations by the author to explain what a script does. Comments
are ignored by the interpreter.

continue Terminates execution of the block of statements in a while or for
loop, and continues execution of the loop with the next iteration.

do...while Executes the specified statements until the test condition evaluates
to false. Statements execute at least once.

export Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

for Creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a block
of statements executed in the loop.

for...in Iterates a specified variable over all the properties of an object. For
each distinct property, JavaScript executes the specified statements.

function Declares a function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

if...else Executes a set of statements if a specified condition is true. If the
condition is false, another set of statements can be executed.

import Allows a script to import properties, functions, and objects from a
signed script that has exported the information.

label Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

return Specifies the value to be returned by a function.

switch Allows a program to evaluate an expression and attempt to match
the expression’s value to a case label.

var Declares a variable, optionally initializing it to a value.

while Creates a loop that evaluates an expression, and if it is true,
executes a block of statements. The loop then repeats, as long as
the specified condition is true.

with Establishes the default object for a set of statements.
614 Client-Side JavaScript Reference

break
break
Use the break statement to terminate a loop, switch , or label statement.

Terminates the current loop, switch , or label statement and transfers program
control to the statement following the terminated loop.

Syntax break [label]

Parameter

Description The break statement includes an optional label that allows the program to
break out of a labeled statement. The statements in a labeled statement can be
of any type.

Examples Example 1. The following function has a break statement that terminates the
while loop when e is 3, and then returns the value 3 * x .

function testBreak(x) {
var i = 0
while (i < 6) {

if (i == 3)
break

i++
}
return i*x

}

Example 2. In the following example, a statement labeled checkiandj
contains a statement labeled checkj . If break is encountered, the program
breaks out of the checkj statement and continues with the remainder of the
checkiandj statement. If break had a label of checkiandj , the program
would break out of the checkiandj statement and continue at the statement
following checkiandj .

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

label Identifier associated with the label of the statement.
Chapter 4, Statements 615

comment
checkiandj :
if (4==i) {

document.write("You've entere d " + i + ".
");
checkj :

if (2==j) {
document.write("You've entere d " + j + ".
");
break checkj;
document.write("The sum i s " + (i+j) + ".
");

}
document.write(i + "- " + j + "=" + (i-j) + ".
");

}

See also continue , label , switch

comment
Notations by the author to explain what a script does. Comments are ignored
by the interpreter.

Syntax // comment text
/* multiple line comment text */

Description JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by a /* and followed by a
*/.

Examples // This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
616 Client-Side JavaScript Reference

continue
continue
Restarts a while , do-while , for , or label statement.

Syntax continue [label]

Parameter

Description In contrast to the break statement, continue does not terminate the execution
of the loop entirely: instead,

• In a while loop, it jumps back to the condition .

• In a for loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue .

Examples Example 1. The following example shows a while loop that has a continue
statement that executes when the value of i is 3. Thus, n takes on the values 1,
3, 7, and 12.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

Example 2. In the following example, a statement labeled checkiandj
contains a statement labeled checkj . If continue is encountered, the program
continues at the top of the checkj statement. Each time continue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checkiandj statement is completed.
checkiandj reiterates until its condition returns false. When false is returned,
the program continues at the statement following checkiandj.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

label Identifier associated with the label of the statement.
Chapter 4, Statements 617

do...while
If continue had a label of checkiandj , the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

document.write(i + "
");
i+=1;

checkj :
while (j>4) {

document.write(j + "
");
j-=1;
if ((j%2)==0)

continue checkj;
document.write(j + " is odd.
");

}
document.write(" i = " + i + "
");
document.write(" j = " + j + "
");

}

See also break, label

do...while
Executes the specified statements until the test condition evaluates to false.
Statements execute at least once.

Syntax do
statements

while (condition);

Parameters

Implemented in JavaScript 1.2, NES 3.0

statements Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

condition Evaluated after each pass through the loop. If condition
evaluates to true, the statements in the preceding block are re-
executed. When condition evaluates to false, control passes to
the statement following do while .
618 Client-Side JavaScript Reference

export
Examples In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.

do {
i+=1
document.write(i);

while (i<5);

export
Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.

Syntax export name1, name2, ..., nameN
export *

Parameters

Description Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

See also import

Implemented in JavaScript 1.2, NES 3.0

nameN List of properties, functions, and objects to be exported.

* Exports all properties, functions, and objects from the script.
Chapter 4, Statements 619

for
for
Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Syntax for ([initial-expression]; [condition]; [increment-expression])
{

statements
}

Parameters

Examples The following for statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

for (var i = 0; i < 9; i++) {
n += i
myfunc(n)

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

initial-expression Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword. These variables are local to
the function, not to the loop.

condition Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in statements are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

increment-expression Generally used to update or increment the counter variable.

statements Block of statements that are executed as long as condition
evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the for statement.
620 Client-Side JavaScript Reference

for...in
for...in
Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

Syntax for (variable in object) {
statements

}

Parameters

Examples The following function takes as its argument an object and the object’s name. It
then iterates over all the object’s properties and returns a string that lists the
property names and their values.

function show_props(obj, objName) {
var result = ""
for (var i in obj) {

result += objName + ". " + i + " = " + obj[i] + "\n"
}
return result

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

variable Variable to iterate over every property, declared with the var
keyword. This variable is local to the function, not to the loop.

object Object for which the properties are iterated.

statements Specifies the statements to execute for each property.
Chapter 4, Statements 621

function
function
Declares a function with the specified parameters. Acceptable parameters
include strings, numbers, and objects.

Syntax function name([param] [, param] [..., param]) {
statements

}

You can also define functions using the Function constructor; see “Function”
on page 169.

Parameters

Description To return a value, the function must have a return statement that specifies the
value to return.

A function created with the function statement is a Function object and
has all the properties, methods, and behavior of Function objects. See
“Function” on page 169 for detailed information on functions.

Examples The following code declares a function that returns the total dollar amount of
sales, when given the number of units sold of products a, b, and c.

function calc_sales(units_a, units_b, units_c) {
return units_a*79 + units_b*129 + units_c*699

}

See also “Function” on page 169

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

name The function name.

param The name of an argument to be passed to the function. A function
can have up to 255 arguments.

statements The statements which comprise the body of the function.
622 Client-Side JavaScript Reference

if...else
if...else
Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Syntax if (condition) {
statements1

}
[else {

statements2
}]

Parameters

Description You should not use simple assignments in a conditional statement. For
example, do not use the following code:

if(x = y)
{

/* do the right thing */
}

If you need to use an assignment in a conditional statement, put additional
parentheses around the assignment. For example, use if((x = y)) .

Backward
Compatibility

JavaScript 1.2 and earlier versions. You can use simple assignments in a
conditional statement. An assignment operator in a conditional statement is
converted to an equality operator. For example, if(x = y) is converted to
if(x == y) . In Navigator, this expression also displays a dialog box with the
message “Test for equality (==) mistyped as assignment (=)? Assuming equality
test.”

Examples if (cipher_char == from_char) {
result = result + to_char
x++}

else
result = result + clear_char

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

condition Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition
evaluates to true, the statements in statements1 are executed.

statements1,
statements2

Can be any JavaScript statements, including further nested if
statements. Multiple statements must be enclosed in braces.
Chapter 4, Statements 623

import
import
Allows a script to import properties, functions, and objects from a signed script
that has exported the information.

Syntax import objectName . name1, objectName . name2, ..., objectName . nameN
import objectName .*

Parameters

Description The objectName parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, the following code makes f and p accessible
in the importing script as properties of obj .

import obj.f, obj.p

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the import statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See also export

Implemented in JavaScript 1.2, NES 3.0

objectName Name of the object that will receive the imported names.

name1,
name2,
nameN

List of properties, functions, and objects to import from the export
file.

* Imports all properties, functions, and objects from the export script.
624 Client-Side JavaScript Reference

label
label
Provides a statement with an identifier that lets you refer to it elsewhere in your
program.

For example, you can use a label to identify a loop, and then use the break or
continue statements to indicate whether a program should interrupt the loop
or continue its execution.

Syntax label :
statements

Parameter

Examples For an example of a label statement using break , see break . For an example
of a label statement using continue , see continue .

See also break , continue

return
Specifies the value to be returned by a function.

Syntax return expression

Parameters

Implemented in JavaScript 1.2, NES 3.0

label Any JavaScript identifier that is not a reserved word.

statements Block of statements. break can be used with any labeled
statement, and continue can be used with looping labeled
statements.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

expression The expression to return.
Chapter 4, Statements 625

switch
Examples The following function returns the square of its argument, x , where x is a
number.

function square(x) {
retur n x * x

}

switch
Allows a program to evaluate an expression and attempt to match the
expression's value to a case label.

Syntax switch (expression){
case label :

statements ;
break;

case label :
statements ;
break;

...
default : statements ;

}

Parameters

Description If a match is found, the program executes the associated statement. If multiple
cases match the provided value, the first case that matches is selected, even if
the cases are not equal to each other.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch .

Implemented in JavaScript 1.2, NES 3.0

expression Value matched against label.

label Identifier used to match against expression.

statements Block of statements that is executed once if expression matches
label .
626 Client-Side JavaScript Reference

var
The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.

Examples In the following example, if expression evaluates to “Bananas”, the program
matches the value with case “Bananas” and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch . If break were omitted, the statement for case
“Cherries” would also be executed.

switch (i) {
case "Oranges" :

document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out o f " + i + ".
");

}
document.write("Is there anything else you'd like?
");

var
Declares a variable, optionally initializing it to a value.

Syntax var varname [= value] [..., varname [= value]]

Parameters

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

varname Variable name. It can be any legal identifier.

value Initial value of the variable and can be any legal expression.
Chapter 4, Statements 627

while
Description The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var , and it is necessary in
functions in the following situations:

• If a global variable of the same name exists.

• If recursive or multiple functions use variables with the same name.

Examples var num_hits = 0, cust_no = 0

while
Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Syntax while (condition) {
statements

}

Parameters

Examples The following while loop iterates as long as n is less than three.

n = 0
x = 0
while(n < 3) {

n ++
x += n

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

condition Evaluated before each pass through the loop. If this condition
evaluates to true, the statements in the succeeding block are
performed. When condition evaluates to false, execution
continues with the statement following statements .

statements Block of statements that are executed as long as the condition
evaluates to true. Although not required, it is good practice to
indent these statements from the beginning of the statement.
628 Client-Side JavaScript Reference

with
Each iteration, the loop increments n and adds it to x . Therefore, x and n take
on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

with
Establishes the default object for a set of statements.

Syntax with (object){
statements

}

Parameters

Description JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

object Specifies the default object to use for the statements. The
parentheses around object are required.

statements Any block of statements.
Chapter 4, Statements 629

with
Examples The following with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods, without specifying an object. JavaScript
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

630 Client-Side JavaScript Reference

C h a p t e r

5
Chapter 5Operators
JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

The following table summarizes the JavaScript operators.

Table 5.1 JavaScript operators.

Operator
category

Operator Description

Arithmetic
Operators

+ (Addition) Adds 2 numbers.

++ (Increment) Adds one to a variable representing a number (returning
either the new or old value of the variable)

- (Unary negation, subtraction) As a unary operator, negates the value of
its argument. As a binary operator, subtracts 2 numbers.

-- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)

* (Multiplication) Multiplies 2 numbers.

/ (Division) Divides 2 numbers.

% (Modulus) Computes the integer remainder of dividing 2 numbers.

String
Operators

+ (String addition) Concatenates 2 strings.

+= Concatenates 2 strings and assigns the result to the first operand.
Chapter 5, Operators 631

Logical
Operators

&& (Logical AND) Returns the first operand if it can be converted to false;
otherwise, returns the second operand. Thus, when used with Boolean
values, && returns true if both operands are true; otherwise, returns false.

|| (Logical OR) Returns the first operand if it can be converted to true;
otherwise, returns the second operand. Thus, when used with Boolean
values, || returns true if either operand is true; if both are false, returns
false.

! (Logical NOT) Returns false if its single operand can be converted to true;
otherwise, returns true.

Bitwise
Operators

& (Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

^ (Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

| (Bitwise OR) Returns a one in a bit if bits of either operand is one.

~ (Bitwise NOT) Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of
bits to the left specified in the second operand, shifting in zeros from the
right.

>> (Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding
bits shifted off, and shifting in zeros from the left.

Table 5.1 JavaScript operators. (Continued)

Operator
category

Operator Description
632 Client-Side JavaScript Reference

Assignment
Operators

= Assigns the value of the second operand to the first operand.

+= Adds 2 numbers and assigns the result to the first.

-= Subtracts 2 numbers and assigns the result to the first.

*= Multiplies 2 numbers and assigns the result to the first.

/= Divides 2 numbers and assigns the result to the first.

%= Computes the modulus of 2 numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

^= Performs a bitwise XOR and assigns the result to the first operand.

|= Performs a bitwise OR and assigns the result to the first operand.

<<= Performs a left shift and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first
operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.

Comparison
Operators

== Returns true if the operands are equal.

!= Returns true if the operands are not equal.

=== Returns true if the operands are equal and of the same type.

!== Returns true if the operands are not equal and/or not of the same type.

> Returns true if the left operand is greater than the right operand.

>= Returns true if the left operand is greater than or equal to the right
operand.

< Returns true if the left operand is less than the right operand.

<= Returns true if the left operand is less than or equal to the right operand.

Table 5.1 JavaScript operators. (Continued)

Operator
category

Operator Description
Chapter 5, Operators 633

Assignment Operators
Assignment Operators
An assignment operator assigns a value to its left operand based on the value of
its right operand.

The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The other
assignment operators are usually shorthand for standard operations, as shown
in the following table.

Special
Operators

?: Performs a simple "if...then...else"

, Evaluates two expressions and returns the result of the second
expression.

delete Deletes an object, an object’s property, or an element at a specified index
in an array.

new Creates an instance of a user-defined object type or of one of the built-in
object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void Specifies an expression to be evaluated without returning a value.

Table 5.1 JavaScript operators. (Continued)

Operator
category

Operator Description

Implemented in JavaScript 1.0

ECMA version ECMA-262

Table 5.2 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y
634 Client-Side JavaScript Reference

Comparison Operators
In unusual situations, the assignment operator is not identical to the Meaning
expression in Table 5.2. When the left operand of an assignment operator itself
contains an assignment operator, the left operand is evaluated only once. For
example:

a[i++] += 5 //i is evaluated only once
a[i++] = a[i++] + 5 //i is evaluated twice

Comparison Operators
A comparison operator compares its operands and returns a logical value based
on whether the comparison is true.

The operands can be numerical or string values. Strings are compared based on
standard lexicographical ordering, using Unicode values.

A Boolean value is returned as the result of the comparison.

• Two strings are equal when they have the same sequence of characters,
same length, and same characters in corresponding positions.

• Two numbers are equal when they are numerically equal (have the same
number value). NaN is not equal to anything, including NaN. Positive and
negative zeros are equal.

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

Table 5.2 Assignment operators

Shorthand operator Meaning

Implemented in JavaScript 1.0

JavaScript 1.3: Added the === and !== operators.

ECMA version ECMA-262 includes all comparison operators except === and !==.
Chapter 5, Operators 635

Comparison Operators
• Two objects are equal if they refer to the same Object.

• Two Boolean operands are equal if they are both true or false .

• Null and Undefined types are equal.

The following table describes the comparison operators.

Table 5.3 Comparison operators

Operator Description Examples returning truea

Equal (==) Returns true if the operands are equal. If the two
operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

3 == var1
"3" == var1
3 == '3'

Not equal (!=) Returns true if the operands are not equal. If the
two operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

var1 != 4
var1 != "3"

Strict equal (===) Returns true if the operands are equal and of the
same type.

3 === var1

Strict not equal (!==) Returns true if the operands are not equal and/or
not of the same type.

var1 !== "3"
3 !== '3'

Greater than (>) Returns true if the left operand is greater than the
right operand.

var2 > var1

Greater than or equal
(>=)

Returns true if the left operand is greater than or
equal to the right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand is less than the
right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand is less than or
equal to the right operand.

var1 <= var2
var2 <= 5

a. These examples assume that var1 has been assigned the value 3 and var2 has been assigned the value 4.
636 Client-Side JavaScript Reference

Comparison Operators
Using the Equality Operators

The standard equality operators (== and !=) compare two operands without
regard to their type. The strict equality operators (=== and !==) perform
equality comparisons on operands of the same type. Use strict equality
operators if the operands must be of a specific type as well as value or if the
exact type of the operands is important. Otherwise, use the standard equality
operators, which allow you to compare the identity of two operands even if
they are not of the same type.

When type conversion is needed, JavaScript converts String , Number,
Boolean , or Object operands as follows.

• When comparing a number and a string, the string is converted to a number
value. JavaScript attempts to convert the string numeric literal to a Number
type value. First, a mathematical value is derived from the string numeric
literal. Next, this value is rounded to nearest Number type value.

• If one of the operands is Boolean , the Boolean operand is converted to 1
if it is true and +0 if it is false .

• If an object is compared with a number or string, JavaScript attempts to
return the default value for the object. Operators attempt to convert the
object to a primitive value, a String or Number value, using the valueOf
and toString methods of the objects. If this attempt to convert the object
fails, a runtime error is generated.

Backward
Compatibility

The behavior of the standard equality operators (== and !=) depends on the
JavaScript version.

JavaScript 1.2. The standard equality operators (== and !=) do not perform a
type conversion before the comparison is made. The strict equality operators
(=== and !==) are unavailable.

JavaScript 1.1 and earlier versions. The standard equality operators (== and
!=) perform a type conversion before the comparison is made. The strict
equality operators (=== and !==) are unavailable.
Chapter 5, Operators 637

Arithmetic Operators
Arithmetic Operators
Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).

These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

% (Modulus)

The modulus operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand,
that is, var1 modulo var2 , in the preceding statement, where var1 and var2
are variables. The modulo function is the integer remainder of dividing var1 by
var2 . For example, 12 % 5 returns 2.

Implemented in JavaScript 1.0

ECMA version ECMA-262
638 Client-Side JavaScript Reference

Arithmetic Operators
++ (Increment)

The increment operator is used as follows:

var ++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and
increments x to 4. If x is 3, then the statement y = ++x increments x to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:

var -- or -- var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statement y = x-- sets y to 3 and
decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and
sets y to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y ; that is, if x were 3, y
would get the value -3 and x would retain the value 3.
Chapter 5, Operators 639

Bitwise Operators
Bitwise Operators
Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

The following table summarizes JavaScript’s bitwise operators:

Table 5.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR a | b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right
shift

a >> b Shifts a in binary representation b bits to
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.
640 Client-Side JavaScript Reference

Bitwise Operators
Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 5, Operators 641

Bitwise Operators
<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.
642 Client-Side JavaScript Reference

Logical Operators
Logical Operators
Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and || operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value.

The logical operators are described in the following table.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

Even though the && and || operators can be used with operands that are not
Boolean values, they can still be considered Boolean operators since their
return values can always be converted to Boolean values.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Table 5.5 Logical operators

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be
converted to false; otherwise, returns expr2 .
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

|| expr1 || expr2 (Logical OR) Returns expr1 if it can be converted
to true; otherwise, returns expr2 . Thus, when
used with Boolean values, || returns true if either
operand is true; if both are false, returns false.

! ! expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.
Chapter 5, Operators 643

Logical Operators
Short-Circuit Evaluation. As logical expressions are evaluated left to right,
they are tested for possible “short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

Backward
Compatibility

JavaScript 1.0 and 1.1. The && and || operators behave as follows:

Examples The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

Operator Behavior

&& If the first operand (expr1) can be converted to false, the &&
operator returns false rather than the value of expr1 .

|| If the first operand (expr1) can be converted to true, the ||
operator returns true rather than the value of expr1 .
644 Client-Side JavaScript Reference

String Operators
String Operators
In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string" .

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring .

Special Operators

?: (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if statement.

Syntax condition ? expr1 : expr2

Parameters

Description If condition is true , the operator returns the value of expr1 ; otherwise, it
returns the value of expr2 . For example, to display a different message based
on the value of the isMember variable, you could use this statement:

document.write ("The fee i s " + (isMember ? "$2.00" : "$10.00"))

Implemented in JavaScript 1.0

ECMA version ECMA-262

Implemented in JavaScript 1.0

ECMA version ECMA-262

condition An expression that evaluates to true or false

expr1, expr2 Expressions with values of any type.
Chapter 5, Operators 645

Special Operators
, (Comma operator)

The comma operator evaluates both of its operands and returns the value of the
second operand.

Syntax expr1 , expr2

Parameters

Description You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a for loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
document.writeln("a["+i+","+j+"] = " + a[i,j])

delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array.

Syntax delete objectName
delete objectName . property
delete objectName [index]
delete property // legal only within a with statement

Parameters

Implemented in JavaScript 1.0

ECMA version ECMA-262

expr1, expr2 Any expressions

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

objectName The name of an object.

property The property to delete.

index An integer representing the array index to delete.
646 Client-Side JavaScript Reference

Special Operators
Description The fourth form is legal only within a with statement, to delete a property from
an object.

You can use the delete operator to delete variables declared implicitly but not
those declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined.

The delete operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete objects)

Deleting array elements. When you delete an array element, the array length
is not affected. For example, if you delete a[3], a[4] is still a[4] and a[3] is
undefined.

When the delete operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with delete .

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {

// this does not get executed
}

If you want an array element to exist but have an undefined value, use the
undefined keyword instead of the delete operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {

// this gets executed
}

Chapter 5, Operators 647

Special Operators
new

The new operator creates an instance of a user-defined object type or of one of
the built-in object types that has a constructor function.

Syntax objectName = new objectType (param1 [, param2] ...[, paramN])

Parameters

Description Creating a user-defined object type requires two steps:

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement car1.color = "black" adds a property color to car1 , and assigns
it a value of "black" . However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a color property to all objects of type car , and
then assigns a value to the color property of the object car1 . For more
information, see prototype

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"

Implemented in JavaScript 1.0

ECMA version ECMA-262

objectName Name of the new object instance.

objectType Object type. It must be a function that defines an object type.

param1...paramN Property values for the object. These properties are parameters
defined for the objectType function.
648 Client-Side JavaScript Reference

Special Operators
Examples Example 1: Object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car , and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string "Eagle" , mycar.year is
the integer 1993 , and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: Object property that is itself another object. Suppose you
define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make;
this.model = model;
this.year = year;
this.owner = owner;

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)
Chapter 5, Operators 649

Special Operators
Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects rand and ken as the parameters
for the owners. To find out the name of the owner of car2 , you can access the
following property:

car2.owner.name

this

The this keyword refers to the current object. In general, in a method this
refers to the calling object.

Syntax this[. propertyName]

Examples Suppose a function called validate validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">

Implemented in JavaScript 1.0

ECMA version ECMA-262
650 Client-Side JavaScript Reference

Special Operators
typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null , the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof 'Hello world' is string

For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 5, Operators 651

Special Operators
For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit

Implemented in JavaScript 1.1

ECMA version ECMA-262
652 Client-Side JavaScript Reference

3
LiveConnect Class Reference
• Java Classes, Constructors, and
Methods

654 Client-Side JavaScript Reference

C h a p t e r

6
Chapter 6Java Classes, Constructors, and

Methods
This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that
allow a Java object to access JavaScript code.

This reference is organized as follows:

• Full entries for each class appear in alphabetical order.

Tables included in the description of each class summarize the constructors
and methods of the class.

• Full entries for the constructors and methods of a class appear in
alphabetical order after the entry for the class.
Chapter 6, Java Classes, Constructors, and Methods 655

JSException.JSException
JSException
The public class JSException extends Exception .

java.lang.Object
|
+----java.lang.Throwable

|
+----java.lang.Exception

|
+----netscape.javascript.JSException

Description JSException is an exception which is thrown when JavaScript code returns an
error.

Constructor
Summary

The netscape.javascript.JSException class has the following
constructors:

The following sections show the declaration and usage of the constructors.

JSException .

Constructor. Constructs a JSException . You specify whether the JSException
has a detail message and other information.

Declaration 1. public JSException()

2. public JSException(String s)

3. public JSException(String s,
String filename,
int lineno,
String source,
int tokenIndex)

Constructor Description

JSException Constructs a JSException. You specify whether the
JSException has a detail message and other information.
656 Client-Side JavaScript Reference

JSException.JSException
Arguments

Description A detail message is a string that describes this particular exception.

Each form constructs a JSException with different information:

• Form 1 of the declaration constructs a JSException without a detail
message.

• Form 2 of the declaration constructs a JSException with a detail message.

• Form 3 of the declaration constructs a JSException with a detail message
and all the other information that usually comes with a JavaScript error.

s The detail message.

filename The URL of the file where the error occurred, if possible.

lineno The line number if the file, if possible.

source The string containing the JavaScript code being evaluated.

tokenIndex The index into the source string where the error occurred.
Chapter 6, Java Classes, Constructors, and Methods 657

JSObject
JSObject
The public final class netscape.javascript.JSObject extends Object .

java.lang.Object
|
+----netscape.javascript.JSObject

Description JavaScript objects are wrapped in an instance of the class
netscape.javascript.JSObject and passed to Java. JSObject allows
Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObject ; when a JSObject is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JSObject class provides a way to invoke JavaScript methods and examine
JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the
JSObject is passed back to JavaScript, the object is unwrapped and can be used
by JavaScript code. See the Client-Side JavaScript Guide for more information
about data type conversions.

Method Summary The netscape.javascript.JSObject class has the following methods:

Method Description

call Calls a JavaScript method.

equals Determines if two JSObject objects refer to the same
instance.

eval Evaluates a JavaScript expression.

getMember Retrieves the value of a property of a JavaScript object.

getSlot Retrieves the value of an array element of a JavaScript object.

removeMember Removes a property of a JavaScript object.

setMember Sets the value of a property of a JavaScript object.

setSlot Sets the value of an array element of a JavaScript object.

toString Converts a JSObject to a string.
658 Client-Side JavaScript Reference

JSObject.call
The netscape.javascript.JSObject class has the following static methods:

The following sections show the declaration and usage of these methods.

call .

Method. Calls a JavaScript method. Equivalent to
“this.methodName(args[0], args[1], ...) ” in JavaScript.

Declaration public Object call(String methodName,
Object args[])

equals .

Method. Determines if two JSObject objects refer to the same instance.

Overrides: equals in class java.lang.Object

Declaration public boolean equals(Object obj)

eval .

Method. Evaluates a JavaScript expression. The expression is a string of
JavaScript source code which will be evaluated in the context given by “this”.

Declaration public Object eval(String s)

getMember .

Method. Retrieves the value of a property of a JavaScript object. Equivalent to
“this.name ” in JavaScript.

Declaration public Object getMember(String name)

Method Description

getWindow Gets a JSObject for the window containing the given
applet.
Chapter 6, Java Classes, Constructors, and Methods 659

JSObject.getSlot
getSlot .

Method. Retrieves the value of an array element of a JavaScript object.
Equivalent to “this[index] ” in JavaScript.

Declaration public Object getSlot(int index)

getWindow .

Static method. Returns a JSObject for the window containing the given applet.
This method is useful in client-side JavaScript only.

Declaration public static JSObject getWindow(Applet applet)

removeMember .

Method. Removes a property of a JavaScript object.

Declaration public void removeMember(String name)

setMember .

Method. Sets the value of a property of a JavaScript object. Equivalent to
“this.name = value ” in JavaScript.

Declaration public void setMember(String name,
Object value)

setSlot .

Method. Sets the value of an array element of a JavaScript object. Equivalent to
“this[index] = value ” in JavaScript.

Declaration public void setSlot(int index,
Object value)
660 Client-Side JavaScript Reference

JSObject.toString
toString .

Method. Converts a JSObject to a String .

Overrides: toString in class java.lang.Object

Declaration public String toString()
Chapter 6, Java Classes, Constructors, and Methods 661

Plugin
Plugin
The public class Plugin extends Object .

java.lang.Object
|
+----netscape.plugin.Plugin

Description This class represents the Java reflection of a plug-in. Plug-ins that need to have
Java methods associated with them should subclass this class and add new
(possibly native) methods to it. This allows other Java entities (such as applets
and JavaScript code) to manipulate the plug-in.

Constructor and
Method Summary

The netscape.plugin.Plugin class has the following constructors:

The netscape.plugin.Plugin class has the following methods:

The following sections show the declaration and usage of these constructors
and methods.

Constructor Description

Plugin Constructs a Plugin.

Method Description

destroy Called when the plug-in is destroyed

getPeer Returns the native NPP object—the plug-in instance that is the
native part of a Java Plugin object

getWindow Returns the JavaScript window on which the plug-in is
embedded

init Called when the plug-in is initialized

isActive Determines whether the Java reflection of a plug-in still refers
to an active plug-in
662 Client-Side JavaScript Reference

Plugin.destroy
destroy .

Method. Called when the plug-in is destroyed. You never need to call this
method directly, it is called when the plug-in is destroyed. At the point this
method is called, the plug-in will still be active.

Declaration public void destroy()

See also init

getPeer .

Method. Returns the native NPP object—the plug-in instance that is the native
part of a Java Plugin object. This field is set by the system, but can be read
from plug-in native methods by calling:

NPP npp = (NPP)netscape_plugin_Plugin_getPeer(env, thisPlugin);

Declaration public int getPeer()

getWindow .

Method. Returns the JavaScript window on which the plug-in is embedded.

Declaration public JSObject getWindow()

init .

Method. Called when the plug-in is initialized. You never need to call this
method directly, it is called when the plug-in is created.

Declaration public void init()

See also destroy
Chapter 6, Java Classes, Constructors, and Methods 663

Plugin.isActive
isActive .

Method. Determines whether the Java reflection of a plug-in still refers to an
active plug-in. Plug-in instances are destroyed whenever the page containing
the plug-in is left, thereby causing the plug-in to no longer be active.

Declaration public boolean isActive()

Plugin .

Constructor. Constructs a Plugin .

Declaration public Plugin()
664 Client-Side JavaScript Reference

4
Appendixes
• Reserved Words

• Color Values

• Netscape Cookies

666 Client-Side JavaScript Reference

Appendix

A
Appendix A Reserved Words
This appendix lists the reserved words in JavaScript.

The reserved words in this list cannot be used as JavaScript variables,
functions, methods, or object names. Some of these words are keywords used
in JavaScript; others are reserved for future use.

abstract
boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete
do
double

else
enum
export
extends
false
final
finally
float
for
function
goto
if
implements
import
in

instanceof
int
interface
long
native
new
null
package
private
protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
volatile
while
with
Appendix A, Reserved Words 667

668 Client-Side JavaScript Reference

Appendix

B
Appendix B Color Values
The string literals in this appendix can be used to specify colors in the
JavaScript alinkColor, bgColor, fgColor, linkColor, and vLinkColor properties
and the fontcolor method.

You can also use these string literals to set the colors in HTML tags, for
example

<BODY BGCOLOR="bisque">

or

color me blue

Instead of using the string to specify a color, you can use the red, green, and
blue hexadecimal values shown in the following table.

Color Red Green Blue

aliceblue F0 F8 FF

antiquewhite FA EB D7

aqua 00 FF FF

aquamarine 7F FF D4

azure F0 FF FF

beige F5 F5 DC

bisque FF E4 C4
Appendix B, Color Values 669

black 00 00 00

blanchedalmond FF EB CD

blue 00 00 FF

blueviolet 8A 2B E2

brown A5 2A 2A

burlywood DE B8 87

cadetblue 5F 9E A0

chartreuse 7F FF 00

chocolate D2 69 1E

coral FF 7F 50

cornflowerblue 64 95 ED

cornsilk FF F8 DC

crimson DC 14 3C

cyan 00 FF FF

darkblue 00 00 8B

darkcyan 00 8B 8B

darkgoldenrod B8 86 0B

darkgray A9 A9 A9

darkgreen 00 64 00

darkkhaki BD B7 6B

darkmagenta 8B 00 8B

darkolivegreen 55 6B 2F

darkorange FF 8C 00

darkorchid 99 32 CC

darkred 8B 00 00

darksalmon E9 96 7A

darkseagreen 8F BC 8F

darkslateblue 48 3D 8B

Color Red Green Blue
670 Client-Side JavaScript Reference

darkslategray 2F 4F 4F

darkturquoise 00 CE D1

darkviolet 94 00 D3

deeppink FF 14 93

deepskyblue 00 BF FF

dimgray 69 69 69

dodgerblue 1E 90 FF

firebrick B2 22 22

floralwhite FF FA F0

forestgreen 22 8B 22

fuchsia FF 00 FF

gainsboro DC DC DC

ghostwhite F8 F8 FF

gold FF D7 00

goldenrod DA A5 20

gray 80 80 80

green 00 80 00

greenyellow AD FF 2F

honeydew F0 FF F0

hotpink FF 69 B4

indianred CD 5C 5C

indigo 4B 00 82

ivory FF FF F0

khaki F0 E6 8C

lavender E6 E6 FA

lavenderblush FF F0 F5

lawngreen 7C FC 00

lemonchiffon FF FA CD

Color Red Green Blue
Appendix B, Color Values 671

lightblue AD D8 E6

lightcoral F0 80 80

lightcyan E0 FF FF

lightgoldenrodyellow FA FA D2

lightgreen 90 EE 90

lightgrey D3 D3 D3

lightpink FF B6 C1

lightsalmon FF A0 7A

lightseagreen 20 B2 AA

lightskyblue 87 CE FA

lightslategray 77 88 99

lightsteelblue B0 C4 DE

lightyellow FF FF E0

lime 00 FF 00

limegreen 32 CD 32

linen FA F0 E6

magenta FF 00 FF

maroon 80 00 00

mediumaquamarine 66 CD AA

mediumblue 00 00 CD

mediumorchid BA 55 D3

mediumpurple 93 70 DB

mediumseagreen 3C B3 71

mediumslateblue 7B 68 EE

mediumspringgreen 00 FA 9A

mediumturquoise 48 D1 CC

mediumvioletred C7 15 85

midnightblue 19 19 70

Color Red Green Blue
672 Client-Side JavaScript Reference

mintcream F5 FF FA

mistyrose FF E4 E1

moccasin FF E4 B5

navajowhite FF DE AD

navy 00 00 80

oldlace FD F5 E6

olive 80 80 00

olivedrab 6B 8E 23

orange FF A5 00

orangered FF 45 00

orchid DA 70 D6

palegoldenrod EE E8 AA

palegreen 98 FB 98

paleturquoise AF EE EE

palevioletred DB 70 93

papayawhip FF EF D5

peachpuff FF DA B9

peru CD 85 3F

pink FF C0 CB

plum DD A0 DD

powderblue B0 E0 E6

purple 80 00 80

red FF 00 00

rosybrown BC 8F 8F

royalblue 41 69 E1

saddlebrown 8B 45 13

salmon FA 80 72

sandybrown F4 A4 60

Color Red Green Blue
Appendix B, Color Values 673

seagreen 2E 8B 57

seashell FF F5 EE

sienna A0 52 2D

silver C0 C0 C0

skyblue 87 CE EB

slateblue 6A 5A CD

slategray 70 80 90

snow FF FA FA

springgreen 00 FF 7F

steelblue 46 82 B4

tan D2 B4 8C

teal 00 80 80

thistle D8 BF D8

tomato FF 63 47

turquoise 40 E0 D0

violet EE 82 EE

wheat F5 DE B3

white FF FF FF

whitesmoke F5 F5 F5

yellow FF FF 00

yellowgreen 9A CD 32

Color Red Green Blue
674 Client-Side JavaScript Reference

Appendix

C
Appendix C Netscape Cookies
A cookie is a small piece of information stored on the client machine in the
cookies.txt file. This appendix discusses the implementation of cookies in the
Navigator client; it is not a formal specification or standard.

You can manipulate cookies

• Explicitly, with a CGI program.

• Programmatically, with client-side JavaScript using the cookie property of
the document object.

• Transparently, with the server-side JavaScript using the client object,
when using client-cookie maintenance.

For information about using cookies in server-side JavaScript, see the Server-
Side JavaScript Guide.

This appendix describes the format of cookie information in the HTTP header,
and discusses using CGI programs and JavaScript to manipulate cookies.
Appendix C, Netscape Cookies 675

Syntax A CGI program uses the following syntax to add cookie information to the
HTTP header:

Set-Cookie:
name=value
[;EXPIRES= dateValue]
[;DOMAIN= domainName]
[;PATH= pathName]
[;SECURE]

Parameters name=value is a sequence of characters excluding semicolon, comma and
white space. To place restricted characters in the name or value , use an
encoding method such as URL-style %XX encoding.

EXPIRES=dateValue specifies a date string that defines the valid life time of
that cookie. Once the expiration date has been reached, the cookie will no
longer be stored or given out. If you do not specify dateValue , the cookie
expires when the user’s session ends.

The date string is formatted as:

Wdy, DD-Mon-YY HH:MM:SS GMT

where Wdy is the day of the week (for example, Mon or Tues); DD is a two-digit
representation of the day of the month; Mon is a three-letter abbreviation for the
month (for example, Jan or Feb); YY is the last two digits of the year; HH:MM:SS
are hours, minutes, and seconds, respectively.

DOMAIN=domainName specifies the domain attributes for a valid cookie. See
“Determining a Valid Cookie” on page 677. If you do not specify a value for
domainName, Navigator uses the host name of the server which generated the
cookie response.

PATH=pathName specifies the path attributes for a valid cookie. See
“Determining a Valid Cookie” on page 677. If you do not specify a value for
pathName , Navigator uses the path of the document that created the cookie
property (or the path of the document described by the HTTP header, for CGI
programming).

SECURE specifies that the cookie is transmitted only if the communications
channel with the host is a secure. Only HTTPS (HTTP over SSL) servers are
currently secure. If SECURE is not specified, the cookie is considered sent over
any channel.
676 Client-Side JavaScript Reference

Description A server sends cookie information to the client in the HTTP header when the
server responds to a request. Included in that information is a description of the
range of URLs for which it is valid. Any future HTTP requests made by the
client which fall in that range will include a transmittal of the current value of
the state object from the client back to the server.

Many different application types can take advantage of cookies. For example, a
shopping application can store information about the currently selected items
for use in the current session or a future session, and other applications can
store individual user preferences on the client machine.

Determining a Valid Cookie. When searching the cookie list for valid
cookies, a comparison of the domain attributes of the cookie is made with the
domain name of the host from which the URL is retrieved.

If the domain attribute matches the end of the fully qualified domain name of
the host, then path matching is performed to determine if the cookie should be
sent. For example, a domain attribute of royalairways.com matches
hostnames anvil.royalairways.com and ship.crate.royalairways.com .

Only hosts within the specified domain can set a cookie for a domain. In
addition, domain names must use at least two or three periods. Any domain in
the COM, EDU, NET, ORG, GOV, MIL , and INT categories requires only two periods;
all other domains require at least three periods.

PATH=pathName specifies the URLs in a domain for which the cookie is valid. If
a cookie has already passed domain matching, then the pathname component
of the URL is compared with the path attribute, and if there is a match, the
cookie is considered valid and is sent along with the URL request. For example,
PATH=/foo matches /foobar and /foo/bar.html . The path "/" is the most
general path.

Syntax of the Cookie HTTP Request Header. When requesting a URL from
an HTTP server, the browser matches the URL against all existing cookies.
When a cookie matches the URL request, a line containing the name/value
pairs of all matching cookies is included in the HTTP request in the following
format:

Cookie: NAME1=OPAQUE_STRING1; NAME2=OPAQUE_STRING2 ...

Saving Cookies. A single server response can issue multiple Set-Cookie
headers. Saving a cookie with the same PATH and NAME values as an existing
cookie overwrites the existing cookie. Saving a cookie with the same PATH
value but a different NAME value adds an additional cookie.
Appendix C, Netscape Cookies 677

The EXPIRES value indicates when to purge the mapping. Navigator will also
delete a cookie before its expiration date arrives if the number of cookies
exceeds its internal limits.

A cookie with a higher-level PATH value does not override a more specific PATH
value. If there are multiple matches with separate paths, all the matching
cookies are sent, as shown in the examples below.

A CGI script can delete a cookie by returning a cookie with the same PATH and
NAME values, and an EXPIRES value which is in the past. Because the PATH and
NAME must match exactly, it is difficult for scripts other than the originator of a
cookie to delete a cookie.

Specifications for the Client. When sending cookies to a server, all cookies
with a more specific path mapping are sent before cookies with less specific
path mappings. For example, a cookie “name1=foo” with a path mapping of “/
” should be sent after a cookie “name1=foo2” with a path mapping of “/bar” if
they are both to be sent.

The Navigator can receive and store the following:

• 300 total cookies

• 4 kilobytes per cookie, where the name and the OPAQUE_STRING combine
to form the 4 kilobyte limit.

• 20 cookies per server or domain. Completely specified hosts and domains
are considered separate entities, and each has a 20 cookie limitation.

When the 300 cookie limit or the 20 cookie per server limit is exceeded,
Navigator deletes the least recently used cookie. When a cookie larger than 4
kilobytes is encountered the cookie should be trimmed to fit, but the name
should remain intact as long as it is less than 4 kilobytes.

Examples The following examples illustrate the transaction sequence in typical CGI
programs.

Example 1. Client requests a document, and receives in the response:

Set-Cookie: CUSTOMER=WILE_E_COYOTE; path=/; expires=Wednesday,
09-Nov-99 23:12:40 GMT

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE
678 Client-Side JavaScript Reference

Client requests a document, and receives in the response:

Set-Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001; path=/

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001

Client receives:

Set-Cookie: SHIPPING=FEDEX; path=/foo

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001

When client requests a URL in path "/foo" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001;
SHIPPING=FEDEX

Example 2. This example assumes all mappings from Example 1 have been
cleared.

Client receives:

Set-Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001; path=/

When client requests a URL in path "/" on this server, it sends:

Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001

Client receives:

Set-Cookie: PART_NUMBER=RIDING_ROCKET_0023; path=/ammo

When client requests a URL in path "/ammo" on this server, it sends:

Cookie: PART_NUMBER=RIDING_ROCKET_0023;
PART_NUMBER=ROCKET_LAUNCHER_0001

There are two name/value pairs named "PART_NUMBER" due to the
inheritance of the "/" mapping in addition to the "/ammo" mapping.
Appendix C, Netscape Cookies 679

680 Client-Side JavaScript Reference

Index

Symbols
- (bitwise NOT) operator 640

- (unary negation) operator 639

-- (decrement) operator 639

! (logical NOT) operator 643

!= (not equal) operator 636, 637

!== (strict not equal) operator 636, 637

(hash mark in URL) 244

$& property 367

$* property 367

$+ property 367

$_ property 367

$‘ property 367

$’ property 367

$1, ..., $9 properties 366

% (modulus) operator 638

%= operator 634

&& (logical AND) operator 643

& (bitwise AND) operator 640

&= operator 635

) 659

*/ comment 616

*= operator 634

+ (string concatenation) operator 645

++ (increment) operator 639

+= (string concatenation) operator 645

+= operator 634

/* comment 616

// comment 616

/= operator 634

< (less than) operator 636

<< (left shift) operator 640, 642

<<= operator 635

<= (less than or equal) operator 636

== (equal) operator 636, 637

=== (strict equal) operator 636, 637

-= operator 634

> (greater than) operator 636

>= (greater than or equal) operator 636

>> (sign-propagating right shift) operator 640,
642

>>= operator 635

>>> (zero-fill right shift) operator 640, 642

>>>= operator 635

?: (conditional) operator 645

^ (bitwise XOR) operator 640

^= operator 635

| (bitwise OR) operator 640

|= operator 635

|| (logical OR) operator 643

‚ (comma) operator 646

A
abort event 575

about: (URL syntax) 253, 254

above property 225

abs method 271

acos method 271

action property 161

alert method 505

align property 444
Index 681

alinkColor property 112

anchor method 408

Anchor object 20

anchors
Anchor object 20
creating 408

anchors array 113

AND (&&) logical operator 643

AND (&) bitwise operator 640

animation 202

appCodeName property 293

APPLET HTML tag 25

Applet object 25

applets
including in a web page 25

applets array 114

apply method 175

appName property 294

appVersion property 294

Area object 27, 238

arguments array 177

arithmetic operators 638
% (modulus) 638
-- (decrement) 639
- (unary negation) 639
++ (increment) 639

arity property 182

Array object 28

arrays
Array object 28
creating from strings 430
deleting elements 646
dense 29
increasing length of 30
indexing 29
initial length of 29, 31
Java 215
joining 36
length of, determining 37, 163, 199, 422
referring to elements 29

arrays (continued)
sorting 43

asin method 272

assignment operators 634
%= 634
&= 635
*= 634
+= 634
/= 634
<<= 635
-= 634
>>= 635
>>>= 635
^= 635
|= 635
conditional statements and 623

atan2 method 274

atan method 273

atob method 506

availHeight property 390

availLeft property 390, 539

availTop property 390

availWidth property 391

B
background color 226

backgroundColor property 445

backgroundImage property 445

background property 225

back method 196, 507

below property 225

bgColor property 114, 226

BIG HTML tag 409

big method 409

bitwise operators 640
& (AND) 640
- (NOT) 640
<< (left shift) 640, 642
>> (sign-propagating right shift) 640, 642
>>> (zero-fill right shift) 640, 642
682 Client-Side JavaScript Reference

bitwise operators (continued)
^ (XOR) 640
| (OR) 640
logical 641
shift 641

BLINK HTML tag 409

blink method 409

blur event 576

blur method
Button object 57
Checkbox object 67
FileUpload object 153
Password object 339
Radio object 353
Reset object 384
Select object 398
Submit object 470
Textarea object 488
Text object 478
window object 508

BOLD HTML tag 410

bold method 410

Boolean object 51
conditional tests and 51

borderBottomWidth property 446

borderColor property 446

borderLeftWidth property 447

border property 207

borderRightWidth property 447

borderStyle property 448

borderTopWidth property 448

borderWidths method
Style object 449

bottom property 227

break statement 615

browser
about: (URL syntax) 254
code name of 293
name of 294

btoa method 508

Button object 56

buttons
Button object 56
clicking programmatically 354, 384, 470
submit 468

C
caching graphics 202

callee property 180

caller property 180

call method 183

call method (LiveConnect) 659

captureEvents method
document object 115
Layer object 226
window object 509

ceil method 275

change event 578

charAt method 411

charCodeAt method 412

checkboxes
Checkbox object 64
clicking programmatically 354, 384, 470
default selection state 354
defining 64

Checkbox object 64

checked property
Checkbox object 67
Radio object 353

classes, accessing Java 218, 333

classes property 116

className property 334

clearInterval method 509

clear property 450

clearTimeout method 510

click event 579
Index 683

click method
Button object 58
Checkbox object 68
Radio object 354
Reset object 384
Submit object 470

clip.bottom property 227

clip.height property 227

clip.left property 227

clip.right property 227

clip.top property 228

clip.width property 228

closed property 511

close method
document object 117
window object 510

colorDepth property 391

color property 450

colors
background 226
hexadecimal values 669
list of 669
string literals 669
string literals for 669–674

comma (‚) operator 646

comments 616

comment statement 616

comparison operators 635
!= (not equal) 636, 637
!== (strict not equal) 636, 637
< (less than) 636
<= (less than or equal) 636
== (equal) 636, 637
=== (strict equal) 636, 637
> (greater than) 636
>= (greater than or equal) 636

compile method 367

complete property 207

concat method
Array object 34
String object 413

conditional (?:) operator 645

conditional tests
assignment operators and 623
Boolean objects and 51

confirm method 512

constructor property
Array object 35
Boolean object 53
Date object 77
Function object 184
Number object 306
Object object 314
RegExp object 368
String object 414

containership
specifying default object 629
with statement and 629

contextual method
document object 118

continue statement 617

conventions 613

cookie property 119

cookies, implementation of 675–679

cos method 275

crypto.random method 514

crypto.signText method 514

crypto property 513

current property 197

D
data property 145

Date object 72

dates
converting to string 103
Date object 72
day of week 78
defining 72
milliseconds since 1970 106
month 80

DblClick event 582
684 Client-Side JavaScript Reference

decrement (--) operator 639

defaultChecked property
Checkbox object 68
Radio object 354

default objects, specifying 629

defaultSelected property 327

defaultStatus property 515

defaultValue property
Password object 339
Textarea object 489
Text object 478

delete operator 646

deleting
array elements 646
objects 646
properties 646

dense arrays 29

description property
MimeType object 290
Plugin object 347

destroy method (LiveConnect) 663

dialog boxes
Confirm 512
Prompt 536

directories
conventions used 16

disableExternalCapture method 516

display property 451

do...while statement 618

document conventions 16

document object 108
embeds array 122

document property
Layer object 228
window object 517

documents
color of 226
document object 108
embeds array 122

domain property 120

DragDrop event 583

E
elements array 161

embeds array 122

enabledPlugin property 290

enableExternalCapture method 517

encoding property 162

ENCTYPE attribute 162

E property 276

equals method (LiveConnect 659

error event 584

escape function 556
Unicode and 557

Euler’s constant 276
raised to a power 277

eval function 558

eval method
LiveConnect 659
Object object 315

event handlers 573–609
See also handleEvent method
event object 143
in Function objects 172
specifying object names in 511

event object 143

events
event object 143

exceptions
LiveConnect 656

exec method 369

exp method 277

export statement 619

expressions that return no value 652
Index 685

F
fgColor property 123

file: (URL syntax) 253

filename property 347

FileUpload object 151

find method 518

fixed method 414

floor method 277

focus
removing 57, 353, 384, 398, 469, 470, 478,

488, 508

focus event 587

focus method
Button object 58
Checkbox object 69
FileUpload object 153
Password object 340
Radio object 355
Reset object 385
Select object 398
Submit object 470
Textarea object 490
Text object 479
window object 518

fontcolor method 415

fontFamily property 451

fonts
big 409
blinking 409
bold 410

fontsize method 416

fontSize property 452

fontStyle property 453

fontWeight property 454

for...in statement 621

for loops
continuation of 617
syntax of 620
termination of 615

FORM HTML tag 157

Form object 157
elements array 161

form property
Button object 59
Checkbox object 69
FileUpload object 153
Hidden object 191
Password object 340
Radio object 355
Reset object 385
Select object 398
Submit object 471
Textarea object 490
Text object 480

forms
checkboxes 64
defining 157
element focus 57, 353, 384, 398, 469, 470,

478, 488, 508
element names 70, 164, 481, 492, 526
elements array 161
ENCTYPE attribute 162
Form object 157
MIME encoding 162
submit buttons 468
submitting 468

forms array 124

for statement 620

Forward button 519

forward method
History object 197
window object 519

Frame object 168

frames
Frame object 168
top 552

frames array 520

fromCharCode method 417

ftp: (URL syntax) 253
686 Client-Side JavaScript Reference

Function object 169
specifying arguments for 170
specifying event handler with 172
as variable value 171

functions
arguments array 177
callee property 180
caller property 180
declaring 622
Function object 169
length property 181
list of 555
nesting 171, 172
number of arguments 163, 199, 422
return values of 625
top-level 555
as variable value 171

function statement 622

G
getDate method 77

getDay method 78

getFullYear method 78

getHours method 79

getMember method (LiveConnect) 659

getMilliseconds method 79

getMinutes method 80

getMonth method 80

getPeer method (LiveConnect) 663

getSeconds method 81

getSelection method 125

getSlot method (LiveConnect) 660

getTime method 81

getTimezoneOffset method 82

getUTCDate method 82

getUTCDay method 83

getUTCFullYear method 83

getUTCHours method 84

getUTCMilliseconds method 85

getUTCMinutes method 85

getUTCMonth method 86

getUTCSeconds method 87

getWindow method (LiveConnect) 660, 663

getYear method 87

global object 555

global property 372

GMT time, defined, local time, defined 73

Go menu 194

go method 198

gopher: (URL syntax) 253

H
handleEvent method

Button object 60
Checkbox object 69
document object 125
FileUpload object 154
Form object 163
Image object 208
Layer object 228
Link object 243
Password object 341
Radio object 356
Reset object 385
Select object 399
Submit object 472
Textarea object 491
Text object 481
window object 521

hash property
Link object 244
Location object 255

height property
document object 126
event object 145
Image object 209
Layer object 227
screen object 391
Index 687

Hidden object 190

history list
next URL in 519

History object 194
current property 197
next property 199
previous property 200

history property 521

home method 521

hostname property
Link object 245
Location object 257

host property
Link object 245
Location object 256

href property
Link object 246
Location object 258

hspace property 209

HTML
generated 140

HTML tags
APPLET 25
BIG 409
BLINK 409
BOLD 410
FORM 157
INPUT 64, 468

http: (URL syntax) 253

I
ids property 126

if...else statement 623

ignoreCase property 373

Image object 201

images
and animation 202
Area object 238
border 207
caching 202

images (continued)
preloading 202
size of 202
source 235

images array 127

import statement 624

increment (++) operator 639

indexOf method 418

index property
Array object 35
Option object 328

Infinity property 560

init method (LiveConnect) 663

in keyword 621

innerHeight property 522

innerWidth property 522

INPUT HTML tag 64, 468

input property
Array object 35
RegExp object 373

isActive method (LiveConnect) 664

isFinite function 561

isNaN function 561

italics method 420

J
JavaArray object 215

JavaClass object 218

javaEnabled method 296

java object 214

JavaObject object 219

JavaPackage object 221

java property 335

JavaScript
background for using 13
reserved words 667
versions and Navigator 14

javascript: (URL syntax) 253
688 Client-Side JavaScript Reference

join method 36

JSException class 656

JSException constructor (LiveConnect) 656

JSObject class 658

K
KeyDown event 589

KeyPress event 590

KeyUp event 592

keywords 667

L
label statement 625

language property 296

lastIndexOf method 420

lastIndex property 374

lastMatch property 375

lastModified property 128

lastParen property 375

Layer object 222

layers 222

layers array 129

layerX property 146

layerY property 146

leftContext property 376

left property 227, 229

left shift (<<) operator 640, 642

length property
arguments array 181
Array object 37
Form object 163
Function object 184
History object 199
JavaArray object 216
Option object 329
Plugin object 347
Select object 399

length property (continued)
String object 422
window object 522

lineHeight property 454

linkColor property 130

link method 422

Link object 238

links
anchors for 408
Link object 238
with no destination 652

links array 131

lists, selection 392

listStyleType property 456

LiveConnect
JavaArray object 215
JavaClass object 218
java object 214
JavaObject object 219
JavaPackage object 221
JSException class 656
JSObject class 658
netscape object 303
Packages object 333
sun object 475

LN10 property 278

LN2 property 278

load event 593

load method 229

locationbar property 523

Location object 251

location property
document object 138
window object 523

LOG10E property 280

LOG2E property 280

logarithms
base of natural 276, 277
natural logarithm of 10 278
Index 689

logical operators 643
! (NOT) 643
&& (AND) 643
|| (OR) 643
short-circuit evaluation 644

log method 279

loops
continuation of 617
for 620
termination of 615
while 628

lowercase 406, 439

lowsrc property 210

M
mailto: (URL syntax) 253

marginBottom property 457

marginLeft property 457

marginRight property 458

margins method
Style object 459

marginTop property 460

match method 423

Math object 269

MAX_VALUE property 306

max method 281

MAYSCRIPT attribute 25

menubar property 524

messages
Confirm dialog box 512
Prompt dialog box 536

method property 163

methods, top-level 555

MIME encoding 162

MimeType object 288

MIME types
configured plug-in for 290
plug-ins supported 344

mimeTypes array 297

MIN_VALUE property 307

min method 281

modifiers property 147

modulo function 638

modulus (%) operator 638

MouseDown event 596

MouseMove event 599

MouseOut event 600

MouseOver event 601

MouseUp event 602

moveAbove method 230

moveBelow method 230

moveBy method
Layer object 230
window object 524

move event 603

moveToAbsolute method 231

moveTo method
Layer object 231
window object 525

multiline property 376

N
name property

anchor object 23
Button object 60
Checkbox object 70
FileUpload object 154
Form object 164
Hidden object 192
Image object 210
Layer object 232
Password object 341
Plugin object 348
Radio object 356
Reset object 386
Select object 399
Submit object 472
Textarea object 492
690 Client-Side JavaScript Reference

name property (continued)
Text object 481
window object 526

NaN property
Number object 307
top-level 562

natural logarithms
base of 276
e 276
e raised to a power 277
of 10 278

Navigator
about: (URL syntax) 254
code name of 293
JavaScript versions supported 14
name of 294

navigator object 292

NEGATIVE_INFINITY property 308

nesting functions 171, 172

netscape.javascript.JSException class 656

netscape.javascript.JSObject class 658

netscape.javascript.Plugin class 662

netscape object 303

netscape property 335

new operator 648

news: (URL syntax) 253

next property 199

NOT (!) logical operator 643

NOT (-) bitwise operator 640

Number function 563

Number object 304

numbers
greater of two 281
identifying 561
Number object 304
obtaining integer 275
parsing from strings 564
square root 285

O
Object object 313

objects
creating new types 648
deleting 646
establishing default 629
focus 57, 353, 384, 398, 469, 470, 478, 488,

508
getting list of properties for 621
iterating properties 621
Java, accessing 219
specifying names in event handlers 511

offscreenBuffering property 526

onAbort event handler 575

onBlur event handler 576

onChange event handler 578

onClick event handler 579

onDblClick event handler 582

onDragDrop event handler 583

onError event handler 584

onFocus event handler 587

onKeyDown event handler 589

onKeyPress event handler 590

onKeyUp event handler 592

onLoad event handler 593

onMouseDown event handler 596

onMouseMove event handler 599

onMouseOut event handler 600

onMouseOver event handler 601

onMouseUp event handler 602

onMove event handler 603

onReset event handler 605

onResize event handler 606

onSelect event handler 607

onSubmit event handler 608

onUnload event handler 609
Index 691

opener property 531

open method
document object 131
window object 527

operators 631–652
arithmetic 638
assignment 634
bitwise 640
comparison 635
list of 631
logical 643
special 645
string 645

Option object 324

options array 400

OR (|) bitwise operator 640

OR (||) logical operator 643

outerHeight property 532

outerWidth property 533

P
packages, accessing Java 221

Packages object 333

paddingBottom property 460

paddingLeft property 461

paddingRight property 462

paddings method
Style object 462

paddingTop property 463

pageXOffset property 533

pageX property
event object 147
Layer object 232

pageYOffset property 534

pageY property
event object 147
Layer object 232

parentLayer property 232

parent property 534

parseFloat function 564

parseInt function 565

parse method 89

Password object 337
default value 339, 478, 489

pathname property
Link object 246
Location object 260

personalbar property 535

PI property 282

pixelDepth property 391

platform property 297

Plugin class 662

Plugin constructor (LiveConnect) 664

Plugin object 344

plug-ins
defined 344
determining installed 344

plugins array 134
navigator object 298

pop method 38

port property 261
Link object 247

POSITIVE_INFINITY property 309

pow method 282

preference method 299

previous property 200

printing generated HTML 140

print method 535

prompt method 536

properties
deleting 646
getting list of for an object 621
iterating for an object 621
top-level 555

protocol property
Link object 248
Location object 262
692 Client-Side JavaScript Reference

prototype property
Array object 38
Boolean object 53
Date object 90
Function object 185
Number object 310
Object object 315
RegExp object 377
String object 424

push method 39

R
radio buttons

clicking programmatically 354, 384, 470
default selection state 354
Radio object 349

Radio object 349

random method 283

referrer property 135

refresh method 298

RegExp object 359

regular expressions 359

releaseEvents method
document object 135
Layer object 233
window object 536

reload method 264

removeMember method (LiveConnect) 660

replace method 265, 425

reserved words 667

reset buttons
clicking programmatically 354, 384, 470
Reset object 381

reset event 605

reset method 165

Reset object 381

resizeBy method
Layer object 233
window object 537

resize event 606

resizeTo method
Layer object 234
window object 538

return statement 625

reverse method 40

RGB color values 669

rightContext property 377

right property 227

text p 250

round method 284

routeEvent method
document object 136
Layer object 234
window object 538

S
savePreferences method 300

screen object 389

screenX property 148

screenY property 148

scrollbars property 540

scrollBy method 541

scroll method 540

scrollTo method 541

search method 428

search property
Link object 248
Location object 267

security
closing windows 510

selectedIndex property 402

select event 607

selection lists
adding options 325
changing option text 325
default selection state 327
deleting options 401
Index 693

selection lists (continued)
number of options 163, 199, 422
option text 330
Select object 392

select method
FileUpload object 155
Password object 342
Textarea object 493
Text object 482

Select object 392

self property 543

setDate method 90

setFullYear method 91

setHotKeys method 544

setHours method 92

setInterval method 545

setMember method (LiveConnect) 660

setMilliseconds method 93

setMinutes method 93

setMonth method 94

setResizable method 546

setSeconds method 95

setSlot method (LiveConnect) 660

setTime method 96

setTimeout method 547

setUTCDate method 96

setUTCFullYear method 97

setUTCHours method 98

setUTCMilliseconds method 99

setUTCMinutes method 99

setUTCMonth method 100

setUTCSeconds method 101

setYear method 101

setZOptions method 549

shift method 40

short-circuit evaluation 644

siblingAbove property 235

siblingBelow property 235

sign-propagating right shift (>>) operator 640,
642

sin method 284

slice method 41, 429

small method 430

sort method 43

source property 377

special operators 645

splice method 46

split method 430

SQRT1_2 property 286

SQRT2 property 286

sqrt method 285

square roots 285

src property
Image object 211
Layer object 235

statements 613–630
syntax conventions 613

statusbar property 551

status property 550

stop method 551

strike method 433

String function 567

String object 404

string operators 645

strings
blinking 409
bold 410
character position within 405, 411, 418
concatenating 645
converting from date 103
converting to floating point 564
creating from arrays 36
defining 404
fontsize of 409
length of 163, 199, 422
lowercase 406, 439
694 Client-Side JavaScript Reference

strings (continued)
parsing 564
splitting into arrays 430
String object 404

Style object 442

styles 442

sub method 434

submit buttons
clicking programmatically 354, 384, 470
defining 468
Submit object 468

submit event 608

submit method 166

Submit object 468

substring method 436

substr method 435

suffixes property 291

sun object 475

sun property 336

sup method 438

switch statement 626

syntax conventions 613

T
tags property 136

taintenabled method 301

taint function 568

tan method 287

target property
event object 148
Form object 167
Link object 249

test method 378

textAlign property 464

Textarea object 485
default value 339, 478, 489

textDecoration property 465

textIndent property 465

Text object 476
default value 339, 478, 489

text property
anchor object 23
Option object 330

textTransform property 466

this.form 59, 69, 153, 191, 340, 355, 385, 398,
471, 480, 490

this keyword 650

timeouts
canceling 510

times
Date object 72
defining 72
minutes 80

title property 137

toGMTString method 102

toLocaleString method 103

toLowerCase method 439

toolbar property 552

top-level properties and functions 555

top property
Layer object 228, 235
window object 552

toSource method
Array object 48
Boolean object 54
Date object 104
Function object 187
Number object 310
Object object 316
RegExp object 378
String object 440

toString method
Array object 49
Boolean object 54
built-in 317
Date object 105
Function object 187
JavaArray object 217
LiveConnect 661
Index 695

toString method (continued)
Number object 311
Object object 317
RegExp object 379
String object 440
user-defined 318

toUpperCase method 441

toUTCString method 105

typeof operator 651

type property
Button object 62
Checkbox object 71
event object 149
FileUpload object 156
Hidden object 192
MimeType object 291
Password object 343
Radio object 357
Reset object 387
Select object 403
Submit object 473
Textarea object 493
Text object 483

U
unary negation (-) operator 639

undefined property 569

unescape function 569
unicode and 557

Unicode
charCodeAt method 412
escape function and 557
unescape function and 557

unload event 609

unshift method 49

untaint function 570

unwatch method 320

URLs
anchor name in 244
conventions used 16
current 251

URLs (continued)
escaping characters in 556
examples of common 253
history list 194
next 519
syntax of 253

userAgent property 302

user interaction
applets 25
checkboxes 64
Confirm dialog box 512
Prompt dialog box 536
submit buttons 468

UTC method 106

UTC time, defined 73

V
valueOf method

Array object 50
Boolean object 55
Date object 107
Function object 188
Number object 312
Object object 321
RegExp object 380
String object 441

value property
Button object 62
Checkbox object 71
FileUpload object 156
Hidden object 193
Option object 332
Password object 343
Radio object 357
Reset object 387
Submit object 473
Textarea object 494
Text object 483

variables
declaring 627
initializing 627
syntax for declaring 627
696 Client-Side JavaScript Reference

var statement 627

versions of JavaScript 14

view-source: (URL syntax) 253

visibility property 236

vlinkColor property 138

void function 240, 253

void operator 652

vspace property 212

W
watch method 322

which property 149

while loops
continuation of 617
syntax of 628
termination of 615

while statement 628

whiteSpace property 466

width property 467
document object 139
event object 149
Image object 213
Layer object 228
screen object 391

window object 496

window property
Layer object 236
window object 553

windows
closed 511
closing 510
name of 70, 164, 481, 492, 526
top 552
window object 496

with statement 629

writeln method 142

write method 139
generated HTML 140

X
XOR (^) operator 640

x property
anchor object 23
event object 150
Layer object 236
link object 250

Y
y property

anchor object 24
event object 150
Layer object 237
link object 250

Z
zero-fill right shift (>>>) operator 640, 642

zIndex property 237
Index 697

	Client-Side JavaScript Reference
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	I. Object Reference
	1. Objects, Methods, and Properties
	Anchor
	name
	text
	x
	y

	Applet
	Area
	Array
	concat
	constructor
	index
	input
	join
	length
	pop
	prototype
	push
	reverse
	shift
	slice
	sort
	splice
	toSource
	toString
	unshift
	valueOf

	Boolean
	constructor
	prototype
	toSource
	toString
	valueOf

	Button
	blur
	click
	focus
	form
	handleEvent
	name
	type
	value

	Checkbox
	blur
	checked
	click
	defaultChecked
	focus
	form
	handleEvent
	name
	type
	value

	Date
	constructor
	getDate
	getDay
	getFullYear
	getHours
	getMilliseconds
	getMinutes
	getMonth
	getSeconds
	getTime
	getTimezoneOffset
	getUTCDate
	getUTCDay
	getUTCFullYear
	getUTCHours
	getUTCMilliseconds
	getUTCMinutes
	getUTCMonth
	getUTCSeconds
	getYear
	parse
	prototype
	setDate
	setFullYear
	setHours
	setMilliseconds
	setMinutes
	setMonth
	setSeconds
	setTime
	setUTCDate
	setUTCFullYear
	setUTCHours
	setUTCMilliseconds
	setUTCMinutes
	setUTCMonth
	setUTCSeconds
	setYear
	toGMTString
	toLocaleString
	toSource
	toString
	toUTCString
	UTC
	valueOf

	document
	alinkColor
	anchors
	applets
	bgColor
	captureEvents
	classes
	close
	contextual
	cookie
	domain
	embeds
	fgColor
	formName
	forms
	getSelection
	handleEvent
	height
	ids
	images
	lastModified
	layers
	linkColor
	links
	open
	plugins
	referrer
	releaseEvents
	routeEvent
	tags
	title
	URL
	vlinkColor
	width
	write
	writeln

	event
	data
	height
	layerX
	layerY
	modifiers
	pageX
	pageY
	screenX
	screenY
	target
	type
	which
	width
	x
	y

	FileUpload
	blur
	focus
	form
	handleEvent
	name
	select
	type
	value

	Form
	action
	elements
	encoding
	handleEvent
	length
	method
	name
	reset
	submit
	target

	Frame
	Function
	apply
	arguments
	arguments.callee
	arguments.caller
	arguments.length
	arity
	call
	constructor
	length
	prototype
	toSource
	toString
	valueOf

	Hidden
	form
	name
	type
	value

	History
	back
	current
	forward
	go
	length
	next
	previous

	Image
	border
	complete
	handleEvent
	height
	hspace
	lowsrc
	name
	src
	vspace
	width

	java
	JavaArray
	length
	toString

	JavaClass
	JavaObject
	JavaPackage
	Layer
	above
	background
	below
	bgColor
	captureEvents
	clip.bottom
	clip.height
	clip.left
	clip.right
	clip.top
	clip.width
	document
	handleEvent
	left
	load
	moveAbove
	moveBelow
	moveBy
	moveTo
	moveToAbsolute
	name
	pageX
	pageY
	parentLayer
	releaseEvents
	resizeBy
	resizeTo
	routeEvent
	siblingAbove
	siblingBelow
	src
	top
	visibility
	window
	x
	y
	zIndex

	Link
	handleEvent
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	search
	target
	text
	x
	y

	Location
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	reload
	replace
	search

	Math
	abs
	acos
	asin
	atan
	atan2
	ceil
	cos
	E
	exp
	floor
	LN10
	LN2
	log
	LOG10E
	LOG2E
	max
	min
	PI
	pow
	random
	round
	sin
	sqrt
	SQRT1_2
	SQRT2
	tan

	MimeType
	description
	enabledPlugin
	suffixes
	type

	navigator
	appCodeName
	appName
	appVersion
	javaEnabled
	language
	mimeTypes
	platform
	plugins
	preference
	savePreferences
	taintEnabled
	userAgent

	netscape
	Number
	constructor
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	prototype
	toSource
	toString
	valueOf

	Object
	constructor
	eval
	prototype
	toSource
	toString
	unwatch
	valueOf
	watch

	Option
	defaultSelected
	index
	length
	selected
	text
	value

	Packages
	className
	java
	netscape
	sun

	Password
	blur
	defaultValue
	focus
	form
	handleEvent
	name
	select
	type
	value

	Plugin
	description
	filename
	length
	name

	Radio
	blur
	checked
	click
	defaultChecked
	focus
	form
	handleEvent
	name
	type
	value

	RegExp
	$1, ..., $9
	$_
	$*
	$&
	$+
	$‘
	$’
	compile
	constructor
	exec
	global
	ignoreCase
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	multiline
	prototype
	rightContext
	source
	test
	toSource
	toString
	valueOf

	Reset
	blur
	click
	focus
	form
	handleEvent
	name
	type
	value

	screen
	availHeight
	availLeft
	availTop
	availWidth
	colorDepth
	height
	pixelDepth
	width

	Select
	blur
	focus
	form
	handleEvent
	length
	name
	options
	selectedIndex
	type

	String
	anchor
	big
	blink
	bold
	charAt
	charCodeAt
	concat
	constructor
	fixed
	fontcolor
	fontsize
	fromCharCode
	indexOf
	italics
	lastIndexOf
	length
	link
	match
	prototype
	replace
	search
	slice
	small
	split
	strike
	sub
	substr
	substring
	sup
	toLowerCase
	toSource
	toString
	toUpperCase
	valueOf

	Style
	align
	backgroundColor
	backgroundImage
	borderBottomWidth
	borderColor
	borderLeftWidth
	borderRightWidth
	borderStyle
	borderTopWidth
	borderWidths
	clear
	color
	display
	fontFamily
	fontSize
	fontStyle
	fontWeight
	lineHeight
	listStyleType
	marginBottom
	marginLeft
	marginRight
	margins
	marginTop
	paddingBottom
	paddingLeft
	paddingRight
	paddings
	paddingTop
	textAlign
	textDecoration
	textIndent
	textTransform
	whiteSpace
	width

	Submit
	blur
	click
	focus
	form
	handleEvent
	name
	type
	value

	sun
	Text
	blur
	defaultValue
	focus
	form
	handleEvent
	name
	select
	type
	value

	Textarea
	blur
	defaultValue
	focus
	form
	handleEvent
	name
	select
	type
	value

	window
	alert
	atob
	back
	blur
	btoa
	captureEvents
	clearInterval
	clearTimeout
	close
	closed
	confirm
	crypto
	crypto.random
	crypto.signText
	defaultStatus
	disableExternalCapture
	document
	enableExternalCapture
	find
	focus
	forward
	frames
	handleEvent
	history
	home
	innerHeight
	innerWidth
	length
	location
	locationbar
	menubar
	moveBy
	moveTo
	name
	offscreenBuffering
	open
	opener
	outerHeight
	outerWidth
	pageXOffset
	pageYOffset
	parent
	personalbar
	print
	prompt
	releaseEvents
	resizeBy
	resizeTo
	routeEvent
	screenX
	screenY
	scroll
	scrollbars
	scrollBy
	scrollTo
	self
	setHotKeys
	setInterval
	setResizable
	setTimeout
	setZOptions
	status
	statusbar
	stop
	toolbar
	top
	window

	2. Top-Level Properties and Functions
	escape
	eval
	Infinity
	isFinite
	isNaN
	NaN
	Number
	parseFloat
	parseInt
	String
	taint
	undefined
	unescape
	untaint

	3. Event Handlers
	onAbort
	onBlur
	onChange
	onClick
	onDblClick
	onDragDrop
	onError
	onFocus
	onKeyDown
	onKeyPress
	onKeyUp
	onLoad
	onMouseDown
	onMouseMove
	onMouseOut
	onMouseOver
	onMouseUp
	onMove
	onReset
	onResize
	onSelect
	onSubmit
	onUnload

	II. Language Elements
	4. Statements
	break
	comment
	continue
	do...while
	export
	for
	for...in
	function
	if...else
	import
	label
	return
	switch
	var
	while
	with

	5. Operators
	Assignment Operators
	Comparison Operators
	Using the Equality Operators

	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Logical Operators
	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	new
	this
	typeof
	void

	III. LiveConnect Class Reference
	6. Java Classes, Constructors, and Methods
	JSException
	JSException

	JSObject
	call
	equals
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString

	Plugin
	destroy
	getPeer
	getWindow
	init
	isActive
	Plugin

	IV. Appendixes
	A. Reserved Words
	B. Color Values
	C. Netscape Cookies

	Index

