
Netscape
Dynamic HTML
and JavaScript
Extensions

While Netscape Navigator 4 provides support for the
Cascading Style Sheets, Level 1 recommendation by

W3C, the company created its own implementation of style
sheets, sometimes called JavaScript Style Sheets, or JSS’s. It’s
not that these style sheets become part of the scripts in your
document, but rather they adopt many of the syntactical
traditions of JavaScript. This is in contrast to the new syntax
(characterized by the property-value pair) of CSS1. In the
arena of dynamically positionable objects, Navigator 4
adheres in part to the CSS-P recommendation and also offers
a new HTML tag, the <LAYER> tag, to create such objects.

This chapter introduces the JavaScript language
extensions employed by JavaScript Style Sheets. Because this
is not the same kind of scripting that you’ve been reading
about in this book, the coverage is intended merely to
acquaint you with the syntax in case you are not aware of it.
More coverage is accorded the positioning aspects of the
<LAYER> tag because these items are scriptable from your
regular scripts. At the end of the chapter, I provide a
Navigator-specific version of the map puzzle game
demonstrated in cross-platform format in Chapter 41.

JavaScript Styles
As with Cascading Style Sheets, JavaScript Style Sheets

define layout characteristics for the content of an HTML tag.
A style defines how the browser renders the page as it loads.
Any adjustment to the content after the page loads requires
scripting beyond the scope of style sheets.

If you are familiar with Cascading Style Sheets (as defined
in the published W3C specification available at
http://www.w3.org/pub/WWW/TR/REC-CSS1), you know

4242C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

JavaScript style
sheets

Dynamic positioning

The map game
tailored for
Navigator 4

✦ ✦ ✦ ✦

876 Part IV ✦ Putting JavaScript to Work

that a typical way for a style sheet to be defined is with the <STYLE> tag whose
TYPE attribute is “text/css”, as follows:

<STYLE TYPE=”text/css”>
H1 {color:red}

</STYLE>

Rules inside the style tag specify the tag type and declarations of properties and
values that override default browser rendering settings.

Navigator provides an alternate syntax that follows the dot syntax model of
JavaScript. Its style type is “text/javascript”, as follows:

<STYLE TYPE=”text/javascript”>
tags.H1.color=”red”

</STYLE>

Within the context of the <STYLE> tag, Navigator recognizes a tags object, which
can contain any known tag name and one of that tag’s properties. Internet Explorer
4 does not recognize the “text/javascript” style type, nor the JavaScript-like syntax
within a <STYLE> tag set. Moreover, while Netscape’s JavaScript objects used in
<STYLE> tags are exposed to scripts written inside <SCRIPT> tag sets, their values
cannot be modified to change the rendering of the object on the fly.

Netscape has defined several objects for style definitions. Many of them assist
in creating groups of styles and exceptions to the rules defined by other styles.

The tags object
Every document object has a tags object. But since the tags object is always at

the document level, the document reference is not needed inside the <STYLE> tag
(although it is required if you intend to read a style property from inside a
<SCRIPT> tag).

The tags object represents all the tags in the current document. To assign a
style to a tag, you must build a reference to that tag and its property according to
the following format:

tags.tagName.propertyName = value

You can assign only one property per statement.
The tagName part of the statement is the text you normally find between the

angle brackets of a tag, such as P for the <P> tag or BODY for the <BODY> tag. Unlike
the usually case-sensitive JavaScript, these tag names can be in upper- or
lowercase. Tags you can use for this purpose are only those that come in a pair of
opening and closing tags. These pairs delimit the range of content affected by a
particular style. You can, however, apply some of your scripting knowledge to
JavaScript inside the <STYLE> tag. For example, if you have many properties you
wish to set for a single tag, the long way to do it would be

<STYLE TYPE=”text/javascript”>
tags.p.color = “green”
tags.p.borderColor = “blue”
tags.p.borderStyle = “3D”
tags.p.borderWidths(“2px”,”2px”,”2px”,”2px”)

</STYLE>

877Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

However, you can use the with operator to shorten the references:

<STYLE TYPE=”text/javascript”>
with(tags.p) {

color = “green”
borderColor = “blue”
borderStyle = “3D”
borderWidths(“2px”,”2px”,”2px”,”2px”)

}
</STYLE>

The classes object
Defining style properties for a given tag could be limiting if you intend to reuse

that tag with a different style. For example, consider a page that contains many
text paragraphs designed with a specific margin and font color. You decide you
want to insert in a few places paragraphs that follow a style that increases the left
and right margins and sets the text to a bold font in a different color. The
cumbersome way to accomplish this would be to keep changing the style
definitions throughout the document. A better way is to define different classes of
the same tag. To define a class, you use the classes object in a style rule. The
format for this kind of statement is as follows:

classes.className.tagName.propertyName = value

For example, to define two different classes for the <P> tag, you would use a
construction like the following:

<STYLE TYPE=”text/javascript”>
classes.normal.p.margins(“2em”,”3em”,”2em”,”3em”)
classes.normal.p.textAlign = “justify”
classes.inset.p.margins(“2em”,”10em”,”2em”,”10em”)
classes.inset.p.textAlign = “center”
classes.inset.p.fontWeight = “bold”

</STYLE>

To apply a class to a tag, use the CLASS attribute for the tag:

<P CLASS=”normal”>...</P>
<P CLASS=”inset”>...</P>

In an abstract way, the classes object lets you define new versions of tags,
although the tag name stays the same. Importantly, it means you can define
multiple styles for a given tag, and then deploy each style where needed
throughout the document.

The ids object
One more object, the ids object, lets you assign a single style property to an

identifier to make it easy to make exceptions to other styles. This works best when
a tag is assigned a group of style properties, but your document needs two
versions of the same style that differ by only one or two style properties. To create
an ids object, use the following syntax format:

ids.idName.propertyName = value

878 Part IV ✦ Putting JavaScript to Work

As an example of the ids object in use, consider the two paragraph classes
defined in the preceding section. If I also want an inset class that looks just like the
insert class except the fontWeight property is normal and a fontStyle property
italic, the entire definition would be as follows:

<STYLE TYPE=”text/javascript”>
classes.normal.p.margins(“2em”,”3em”,”2em”,”3em”)
classes.normal.p.textAlign = “justify”
classes.inset.p.margins(“2em”,”10em”,”2em”,”10em”)
classes.inset.p.textAlign = “center”
classes.inset.p.fontWeight = “bold”
ids.altInset.fontWeight = “normal”
ids.altInset.fontStyle = “italic”

</STYLE>

To deploy the inset paragraph with the alternate properties, the container tag
specifies both the CLASS and ID attributes:

<P CLASS=”inset” ID=”altInset”>...</P>

The all keyword
For one more slice on the organization of styles, you can specify that a given

style class is applicable to any tag in the document. In contrast, under normal
circumstances, a class is restricted to the tags specified in the classes object
definition. The all keyword defines a class that can be used for all tags in a
document. For example, consider the following style definition:

<STYLE TYPE=”text/javascript”>
classes.hotStuff.all.color = “red”
classes.normal.p.margins(“2em”,”3em”,”2em”,”3em”)
classes.normal.p.textAlign = “justify”
classes.inset.p.margins(“2em”,”10em”,”2em”,”10em”)
classes.inset.p.textAlign = “center”
classes.inset.p.fontWeight = “bold”

</STYLE>

With this definition, the hotStuff class could be applied to any tag to turn its
content red. But if I wanted to make the content of a <DIV> tag bold and center-
aligned, I could not use the inset class, because that class is defined to be applied
only to a <P> tag.

Be sure to separate in your mind Navigator’s all keyword from Internet
Explorer’s all keyword. The former applies to style classes; the latter applies to
document objects in general (in the context of the Internet Explorer 4 document
object model).

Contextual styles
One final entry in Navigator’s JavaScript Style Sheet vocabulary is the

contextual() method. It provides yet another way to specify the application of a
specific style. In this case, it defines what outer block tag surrounds a tag with a
special style. For example, if I want all tags inside <P> tags (but nowhere else)
to display its text in red, I would define a contextual connection between the <P>
and tags as follows:

879Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

<STYLE TYPE=”text/javascript”>
contextual(tags.p, tags.b).color = “red”

</STYLE>

Given the above style, a tag set in a <DIV> or <H1> block would be
displayed in the default color; but inside any <P> block, the color would be red.

Style Properties
If you use JavaScript Style Sheets, you must use the JavaScript syntax for setting

style properties. For the most part, the property names are interCap versions of
the CSS property names (which often include hyphens that JavaScript can’t handle
in identifiers). In-depth coverage of these properties and how to use them are
within the scope of a volume dedicated to Dynamic HTML, not a JavaScript book,
but I would be remiss if this book did not include at least a quick reference to the
terminology. If the day should come that more of these properties are modifiable
on the fly, then all of these properties (and the tags, classes, and ids objects) will
become part of Navigator’s document object model and move into the mainstream
of JavaScript programming on Navigator.

Properties listed in this section are properties of the tags, classes, and ids
objects. Many properties rely on specific settings, rather than numeric values. As a
result, these items have a default value that governs the property if the property is
not explicitly set in the style sheet.

In the property listings that follow, you will see several property value types
listed as size. This usually means that the property must be set to a particular
length that can be specified in several different units. When the content is
designed for display on computer screen (as opposed to designed exclusively for
printing), the unit is usually the pixel, abbreviated “px.” Thus, a value to be set to
20 pixels would be entered as 20px. Other supported unit measures are points,
ems, picas, and x-height, entered as pt, em, pi, and ex, respectively.

As with HTML attributes that specify color, style properties for colors accept
either Netscape color names or the standard RGB hexadecimal-triplet color
designation. Note, however, that in Navigator 4, if you retrieve a color value, it may
be returned as a decimal equivalent of the hexadecimal value. This makes it
difficult to test for the current color of an object.

Block-level formatting properties
A block-level element is one that is normally rendered as a self-contained item,

beginning its display on a new line and ending its display such that the next
element appears on a new line after the block. For example, all the heading tags
(for example, <H1>) are block-level elements, because the content between the
start and end tags always starts on a new line, and forces a pseudo line break after
the end. Properties that affect block-level rendering are shown in Table 42-1.

Block-level elements lend themselves to being surrounded by borders. They
also can have margins, padding between borders and content, and other
properties that befit a rectangular space on the page. When a block-level element
property is one of a matched set, such as the top, left, bottom, and right edges of a
block, JavaScript style sheets usually provide a single method that lets you set all
four properties in one statement. For example, you can set the borderWidth
property for any single side with the specific property name (such as

880 Part IV ✦ Putting JavaScript to Work

borderWidthTop), but to set all four at once, use the borderWidths() method,
and fill in four parameters to set a block’s complete border width specification:

classes.special.div.borderWidths(“2px”,”3px”,”2px”,”3px”)

Before using these methods, be sure you understand which parameter treats
which side of the block. In the case of borders, the parameter sequence starts on
the top edge and progresses clockwise around the rectangle.

Table 42-1
Block-level Style Properties

Property Default Values

align none left | right | none

backgroundColor browser default colorName | RGB

backgroundImage empty URL

borderBottomWidth 0 size

borderLeftWidth 0 size

borderRightWidth 0 size

borderTopWidth 0 size

borderWidths() 0,0,0,0 valueTop, valueRight, valueBottom,
valueLeft

borderColor none colorValue | none

borderStyle none none | solid | 3D

clear none left | right | both | none

color browser default colorName | RGB

height auto size | auto

marginBottom 0 size | percentage | auto

marginLeft 0 size | percentage | auto

marginRight 0 size | percentage | auto

marginTop 0 size | percentage | auto

margins() 0,0,0,0 valueTop, valueRight, valueBottom,
valueLeft

paddingBottom 0 size | percentage

paddingLeft 0 size | percentage

paddingRight 0 size | percentage

paddingTop 0 size | percentage

paddings() 0,0,0,0 valueTop, valueRight, valueBottom,
valueLeft

width auto size | auto

881Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

Font and text properties
The next grouping, shown in Table 42-2, encompasses properties that control

the look of fonts and text. These properties can be assigned to block-level and in-
line elements.

To specify a value for the fontFamily property, you can name specific fonts or
classes of fonts, each separated by a comma. The browser attempts to find a
match for the font name on the user’s system (the list of available fonts may be
smaller than installed fonts, however). If no match occurs, the browser tries to use
the next font specification in the font family list. For example, if you want to define
Arial as the primary font and a generic serif font from the built-in list of generic
font families (serif, sans-serif, cursive, monospace, and fantasy), define a
tag style property like the following:

tags.p.fontFamily = “Arial, serif”

When a text property in Table 42-2 includes choices for a size or a percentage,
the property may be influenced by related settings of a parent container. For
example, if a paragraph tag has its fontSize property set to large, a style for an
in-line tag inside that paragraph uses the parent container’s settings as a starting
point. Therefore, to increase the font size for an in-line item (say, a <DIV> tag) to
150 percent of the parent, define the style as follows:

tags.div.fontSize *= 1.5

With the multiply-by-value operator at work here, the property value acts as a
percentage value over the value inherited from the parent. You can read more
about the fine points of style inheritance at Netscape’s online documentation for
Dynamic HTML (http://developer.netscape.com/library/documentation/-
communicator/dynhtml/).

Table 42-2
Font and Text Style Properties

Property Default Values

fontFamily browser default fontFamilyList

fontSize medium x-small | small | medium | large | x-large | xx-
large | larger | smaller | [+/-] integer |
percentage

fontStyle normal normal | italic | italic small-caps | oblique |
oblique small-caps | small-caps

fontWeight normal normal | bold | bolder | lighter | 100 - 900

lineHeight browser default number | size | percentage

textAlign browser default left | right | center | justify

textDecoration none none | underline | overline | line-through |
blink

(continued)

882 Part IV ✦ Putting JavaScript to Work

Table 42-2 (continued)

Property Default Values

textIndent 0 size | percentage

textTransform none none | capitalize | lowercase | uppercase

verticalAlign baseline baseline | sub | super | top | text-top | middle
| bottom | text-bottom | percentage

Classification properties
One last group of properties, shown in Table 42-3, works more in the plumbing

of style sheets, rather than impacting visual elements on a page. The first property,
display, defines whether a tag should be treated as a block, inline, or list-item
element. All HTML tags have default settings for this property, but you can
override the default behavior, which may come in handy as you deploy generic
tags such as <DIV> and for special purposes in your document.

The second property, listStyleType, gives you control over the way
unordered and ordered lists display leading characters for their items. You assign
this property to any tag whose display property is set to list-item (such as the
 and tags). And the third property, whiteSpace, defines how white
space in the HTML source should be treated by the browser rendering engine.
Normal processing collapses white space, but setting the property to pre is the
same as surrounding a source in a <PRE> tag set.

Table 42-3
Classification Properties

Property Default Values

display HTML default block | inline | list-item | none

listStyleType disc disc | circle | square | decimal | lower-roman |
upper-roman | lower-alpha | upper-alpha |
none

whiteSpace normal normal | pre

Dynamic Positioning
In addition to supporting the Cascading Style Sheets-Positioning (CSS-P)

standard, Navigator 4 also features its own implementation of a Dynamic HTML
positioning system. This system is built around the layer object — generally
created via the <LAYER> tag — which is so far unique to Navigator. Chapter 19 goes
into great detail about the layer object and provides several example pages that
help you learn how the object’s properties, methods, and event handlers work.

883Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

In this chapter, I apply the <LAYER> object to the Dynamic HTML example
shown for the first time as a cross-platform DHTML application in Chapter 41.
Because the version in this chapter deals with only one platform, the amount of
code is substantially less.

Navigator puzzle game overview
The Navigator-only version of the game relies on two HTML files and numerous

image files. The main HTML file loads to reveal the play area (Figure 42-1). Content
and HTML rendering instructions for a normally hidden panel of instructions are in
the second HTML file. That second file is loaded as the source for a <LAYER>
object defined in the main document. But, as you will see, even the secondary
document contains JavaScript Style Sheets to help format the content as desired.
Image files for this and the other two versions of the game are completely
identical.

Figure 42-1: The Netscape-only version of the puzzle game (Image coutesy of
Cartesia Software — www.map-art.com)

Structure of the main HTML document is straightforward. A large <SCRIPT> tag
segment in the Head portion contains all the scripting for the main document (the
instructions file has its own scripting). Document-level event capture is set for the
main document to control the picking up, dragging, and release of state maps.

884 Part IV ✦ Putting JavaScript to Work

The main document
Listing 42-1 contains the entire source code for the main document. In most

cases, the scripting code is identical to the Navigator portion of scripts in the
cross-platform version. One large exception is that there is no external library of
DHTML APIs, because the scripts can take direct advantage of Navigator’s own
vocabulary for layer properties and methods.

A big divergence between the versions appears in the usage of the <LAYER> tag
throughout the Body portion of this chapter’s version. Each positionable element
is defined as a layer. Layer object properties that have the same names as
JavaScript style properties are not the same items. For example, you cannot set
the height and width of a layer object via the style sheet syntax in a <STYLE> tag
elsewhere in the document.

For in-depth descriptions of the functions in the script and the structure of the
layer objects, see the commentary associated with Listing 41-2.

Listing 42-1: The Main Document (NSmapgam.htm)

<HTML>
<HEAD><TITLE>Map Game</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// global variables
// click offsets
var offsetX = 0
var offsetY = 0
// info about clicked state map
var selectedObj
var selectedState = ""
var selectedStateIndex
var intervalID

// state object constructor
function state(abbrev, fullName, x, y) {

this.abbrev = abbrev
this.fullName = fullName
// correct destination position
this.x = x
this.y = y
this.done = false

}
// build states objects
var states = new Array()
states[0] = new state("ca", "California", 107, 234)
states[1] = new state("or", "Oregon", 107, 204)
states[2] = new state("wa", "Washington", 123, 188)
states[3] = new state("id", "Idaho", 148, 197)
states[4] = new state("az", "Arizona", 145, 285)
states[5] = new state("nv", "Nevada", 127, 241)
states[6] = new state("ut", "Utah", 155, 249)

885Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

// find out which state map layer is clicked on
function getSelectedMap(clickX, clickY) {

var obj
var testObj
for (var i = states.length - 1; i >= 0; i--) {

testObj = document.layers[states[i].abbrev + "map"]
if ((clickX > testObj.left) && (clickX < testObj.left +

testObj.clip.width) && (clickY > testObj.top) && (clickY < testObj.top
+ testObj.clip.height)) {

obj = testObj
break

}
}
selectedObj = obj
if (selectedObj) {

selectedStateLabel =
document.bgmap.document.layers[states[i].abbrev + "label"]

selectedStateIndex = i
// zoom the selected map to the frontmost layer
selectedObj.zIndex = 100

}
}
// handle drag
function dragIt(e) {

if (selectedObj) {
selectedObj.moveTo(e.pageX - offsetX, e.pageY - offsetY)

}
}
// turn click mode on and off
function toggleEngage(e) {

if (selectedObj) {
release(e)

} else {
engage(e)

}
}
// turn click mode on
function engage(e) {

// set global selected values
getSelectedMap(e.pageX, e.pageY)
if (selectedObj) {

// store click offsets within layer and save to globals
offsetX = e.pageX - selectedObj.left
offsetY = e.pageY - selectedObj.top
// turn corresponding label background to yellow
selectedStateLabel.bgColor = "yellow"

}
}
// handle mouse button release
function release(e) {

if (selectedObj) {
// see if state has been dragged to within 4 pixels of

destination

(continued)

886 Part IV ✦ Putting JavaScript to Work

Listing 42-1 (continued)

if (onTarget(e)) {
// set label to green
selectedStateLabel.bgColor = "green"
// and state object's done property to true
states[selectedStateIndex].done = true
// see if you're done and flash the labels
if (isDone()) {

document.congrats.visibility="visible"
}

} else {
// otherwise revert label to red
selectedStateLabel.bgColor = "red"
states[selectedStateIndex].done = false
document.congrats.visibility="hidden"

}
// set object z-order to bottom
selectedObj.zIndex = 0
selectedObj = null
selectedState = ""

}
}
// test whether dragged map is near destination
function onTarget(e) {

// get destination coords from states object
var x = states[selectedStateIndex].x
var y = states[selectedStateIndex].y
// get current location
var objX = selectedObj.pageX
var objY = selectedObj.pageY
// see if object is within 4 pixels of destination
if ((objX >= x-2 && objX <= x+2) && (objY >= y-2 && objY <=

y+2)) {
// snap object to destination
selectedObj.moveTo(x,y)
return true

}
return false

}
// test if all states have been placed
function isDone() {

for (var i = 0; i < states.length; i++) {
if (!states[i].done) {

return false
}

}
return true

}
function showHelp() {

var help = document.help
help.visibility = "show"

887Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

help.zIndex = 1000
intervalID = setInterval(moveHelp,1)

}
function moveHelp(obj) {

var help = document.help
help.moveBy(-5,0)
if (help.pageX <= (window.innerWidth/2) - 150) {

clearInterval(intervalID)
}

}
function setEvents() {

document.captureEvents(Event.MOUSEDOWN | Event.MOUSEMOVE)
document.onMouseDown = toggleEngage
document.onMouseMove = dragIt

}
</SCRIPT>
</HEAD>
<BODY onLoad="setEvents()">
<H1>"Lower 48" U.S. Map Puzzle <A HREF="javascript:void
showHelp()" onMouseOver="status='Show help panel....';return true"
onMouseOut="status='';return true"><IMG SRC="info.gif" HEIGHT=22
WIDTH=22 BORDER=0></H1>
<HR>
<LAYER ID="help" TOP=80 LEFT=&{window.innerWidth}; WIDTH=300
VISIBILITY="HIDDEN" SRC="instrux.htm"></LAYER>

<LAYER ID="bgmap" TOP=180 LEFT=100><IMG SRC="us11.gif" WIDTH=306
HEIGHT=202 BORDER=1>
<LAYER ID="azlabel" TOP=0 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>Arizona</CENTER></LAYER>
<LAYER ID="calabel" TOP=29 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>California</CENTER></LAYER>
<LAYER ID="orlabel" TOP=58 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>Oregon</CENTER></LAYER>
<LAYER ID="utlabel" TOP=87 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>Utah</CENTER></LAYER>
<LAYER ID="walabel" TOP=116 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>Washington</CENTER></LAYER>
<LAYER ID="nvlabel" TOP=145 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>Nevada</CENTER></LAYER>
<LAYER ID="idlabel" TOP=174 LEFT=310 BGCOLOR="red" WIDTH=100
HEIGHT=28><CENTER>Idaho</CENTER></LAYER>
</LAYER>

<LAYER ID="congrats" TOP=100 LEFT=20 VISIBILITY="HIDDEN"><H1>Congratulations!</H1></LAYER>
<LAYER ID="camap" TOP=100 LEFT=20><IMG SRC="ca.gif" WIDTH=47 HEIGHT=82
BORDER=0></LAYER>
<LAYER ID="ormap" TOP=100 LEFT=60><IMG SRC="or.gif" WIDTH=57 HEIGHT=45
BORDER=0></LAYER>
<LAYER ID="wamap" TOP=100 LEFT=100><IMG SRC="wa.gif" WIDTH=38 HEIGHT=29
BORDER=0></LAYER>

(continued)

888 Part IV ✦ Putting JavaScript to Work

Listing 42-1 (continued)

<LAYER ID="idmap" TOP=100 LEFT=140><IMG SRC="id.gif" WIDTH=34 HEIGHT=55
BORDER=0></LAYER>
<LAYER ID="azmap" TOP=100 LEFT=180><IMG SRC="az.gif" WIDTH=38 HEIGHT=45
BORDER=0></LAYER>
<LAYER ID="nvmap" TOP=100 LEFT=220><IMG SRC="nv.gif" WIDTH=35 HEIGHT=56
BORDER=0></LAYER>
<LAYER ID="utmap" TOP=100 LEFT=260><IMG SRC="ut.gif" WIDTH=33 HEIGHT=41
BORDER=0></LAYER>

<SCRIPT LANGUAGE="JavaScript">
</SCRIPT>
</BODY>
</HTML>

The help panel
Content for the flying help panel comes from the second file, instrux.htm. The

source for that document is shown in Listing 42-2. Although quite simple as HTML
goes, this document benefits from a couple style rules. Without setting the
marginTop property of the first paragraph or the marginRight property of the
ordered list entries, the text would be positioned too close to the edges of the
panel. Other style properties could also be used to make the same adjustments.
You can see the results in Figure 42-2.

Figure 42-2: The help panel at rest

An advantage of having a layer’s content loaded as a separate HTML document
comes home in this example. All event handling and scripting related to this
positionable element is encapsulated in the external document. Nothing from this
document clutters the source code of the main document, except for the animation
routine. Moreover, the content can be reused in another document by having
another <LAYER> tag load it in.

889Chapter 42 ✦ Netscape Dynamic HTML and JavaScript Extensions

Listing 42-2: The Help Panel Document (instrux.htm)

<HTML>
<HEAD>
<STYLE TYPE="text/javascript">
tags.P.marginTop = 5
tags.OL.marginRight = 20
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
window.captureEvents(Event.CLICK)
window.onclick = hideMe
function hideMe() {

window.document.help.visibility = "hidden"
window.document.help.moveTo(window.innerWidth,120)

}
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#98FB98">
<P><CENTER>Instructions</CENTER></P>
<HR COLOR="seagreen">

Click on a state map to pick it up. The label color turns yellow.
Move the mouse and map into position, and click the mouse to drop
the state map.
If you are close to the actual location, the state snaps into
place and the label color turns green.

<FORM>
<CENTER>
<INPUT TYPE="button" VALUE="Close" onClick="">
</CENTER>
</FORM>
</BODY>
</HTML>

Lessons learned
Because I am comfortable with Netscape’s document object model and the

hierarchy of nested objects such as frames, the experience of building this page
with the <LAYER> tag and its scriptable pieces seemed like a natural extension to
my previous knowledge. Using separate HTML files as building blocks to a complex
document also has its appeal in a number of application scenarios. At the same
time, it becomes clear that JavaScript Style Sheets and positionable elements are
two distinct components of Navigator Dynamic HTML. There is very little overlap
in the syntax or objects in the implementation of Navigator 4. Even so, if my
deployment environment were guaranteed to be Navigator 4 only, I would build the
application with the Netscape-specific extensions.

✦ ✦ ✦

